Network Embedding: Theories, Methods, and Applications (Hardcover)
暫譯: 網路嵌入:理論、方法與應用(精裝版)
Yang, Cheng, Liu, Zhiyuan, Tu, Cunchao
- 出版商: Morgan & Claypool
- 出版日期: 2021-03-25
- 售價: $3,340
- 貴賓價: 9.5 折 $3,173
- 語言: 英文
- 頁數: 242
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1636390463
- ISBN-13: 9781636390468
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
High-Performance Computing: Paradigm and Infrastructure (Hardcover) (廠商庫存書側有些許黴斑,若不介意再下單)$1,560$1,529 -
$500深入淺出密碼學-常用加密技術原理與應用 (Understanding Cryptography: A Textbook for Students and Practitioners) -
Theory of Conditional Games (Paperback)$2,620$2,489 -
高等微積分【解析概論】$550$523 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
OpenCV 3 學習手冊 (Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library)$1,200$948 -
Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog, 6/e (GE-Paperback)$1,380$1,352 -
$465統計學習方法, 2/e -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
線性代數應該這樣學, 3/e$419$398 -
$210深度神經網絡 FPGA 設計與實現 -
$454博弈論:策略分析入門, 3/e (Game Theory: A Nontechnical Introduction to the Analysis of Strategy, 3/e) -
$458BERT 基礎教程:Transformer 大模型實戰 -
線性代數 (原書第10版)$594$564 -
$449基於 GPT-3、ChatGPT、GPT-4 等 Transformer 架構的自然語言處理 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$695 -
算力芯片 — 高性能 CPU / GPU / NPU 微架構分析$774$735
商品描述
Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.
This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.
商品描述(中文翻譯)
許多機器學習演算法需要實值特徵向量作為數據實例的輸入。透過將數據投影到向量空間,表示學習技術在計算機視覺和自然語言處理等許多領域取得了令人鼓舞的表現。對於離散關係數據,即網絡或圖形,學習表示也是必要的。網絡嵌入(Network Embedding, NE)旨在為網絡中的每個節點或頂點學習向量表示,以編碼拓撲結構。由於其令人信服的性能和效率,NE已廣泛應用於許多網絡應用中,如節點分類和鏈接預測。
本書提供了網絡表示學習(Network Representation Learning, NRL)基本概念、模型和應用的全面介紹。本書首先介紹網絡嵌入的背景和興起,為讀者提供一般概述。接著,通過介紹幾種在一般圖形上的代表性方法以及基於矩陣分解的統一NE框架,介紹NE技術的發展。然後,介紹帶有附加信息的NE變體:針對具有節點屬性/內容/標籤的圖形的NE;以及具有不同特徵的變體:針對社群結構/大規模/異質圖形的NE。此外,本書介紹了NE的不同應用,如推薦系統和信息擴散預測。最後,本書總結了方法和應用,並展望未來的發展方向。