Computational Texture and Patterns: From Textons to Deep Learning

Dana, Kristin J., Medioni, Gerard, Dickinson, Sven

  • 出版商: Morgan & Claypool
  • 出版日期: 2018-09-13
  • 售價: $1,570
  • 貴賓價: 9.5$1,492
  • 語言: 英文
  • 頁數: 113
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1681730111
  • ISBN-13: 9781681730110
  • 相關分類: DeepLearning 深度學習

下單後立即進貨 (約1~2週)

相關主題

商品描述

Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance-to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.