Efficient Processing of Deep Neural Networks (Paperback)
暫譯: 深度神經網絡的高效處理 (平裝本)
Sze, Vivienne, Chen, Yu-Hsin, Yang, Tien-Ju
- 出版商: Morgan & Claypool
- 出版日期: 2020-06-24
- 售價: $3,150
- 貴賓價: 9.5 折 $2,993
- 語言: 英文
- 頁數: 342
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1681738317
- ISBN-13: 9781681738314
-
相關分類:
DeepLearning
-
其他版本:
Efficient Processing of Deep Neural Networks (Hardcover)
立即出貨 (庫存=1)
買這商品的人也買了...
-
Digital Communications: Design for the Real World (Paperback)$980$960 -
Fundamentals of Power Electronics, 2/e (Hardcover)$1,250$1,225 -
C Programming: A Modern Approach, 2/e (Paperback)$1,450$1,421 -
Probability, Statistics, and Random Processes For Electrical Engineering, 3/e (IE-Paperback)$1,600$1,568 -
Learning From Data (Hardcover)$1,200$1,176 -
Top-Down Digital VLSI Design: From Architectures to Gate-Level Circuits and FPGAs (Paperback)$1,650$1,617 -
CMOS Digital Integrated Circuits Analysis & Design, 4/e (IE-Paperback)$1,200$1,176 -
$414機器視覺算法與應用 (雙語版) -
$726深入理解計算機系統, 3/e (Computer Systems: A Programmer's Perspective, 3/e) -
$419算法圖解 (Grokking Algorithms: An illustrated guide for programmers and other curious people) -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
Digital Systems Design and Practice: Using Verilog HDL and FPGAs (美國原版)$4,400$4,180 -
動手做深度強化學習 (Deep Reinforcement Learning Hands-On)$690$538 -
$301人工智能算法 捲1 基礎算法 -
Deep Learning - Hardware Design$680$646 -
Introduction to Graph Neural Networks (Paperback)$1,760$1,672 -
圖解量子電腦入門:8堂基礎課程+必懂關鍵詞解說,從計算原理到實務應用、通訊到演算,破解讓人類大躍進的科技新浪潮$420$357 -
Deep Learning 3|用 Python 進行深度學習框架的開發實作$780$616 -
光電子技術, 5/e$375$356 -
Introduction to Algorithms, 4/e (Hardcover)$2,190$2,146 -
矽基光電子集成技術 — 光波導放大器和激光器$594$564 -
Deep Learning 4|用 Python 進行強化學習的開發實作$680$537 -
$516大規模語言模型:從理論到實踐 -
$454RISC-V 開放架構設計之道 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748
相關主題
商品描述
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics--such as energy-efficiency, throughput, and latency--without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.
The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
商品描述(中文翻譯)
這本書提供了關於有效處理深度神經網絡(DNNs)的關鍵原則和技術的結構化探討。DNNs 目前在許多人工智慧(AI)應用中被廣泛使用,包括計算機視覺、語音識別和機器人技術。雖然 DNNs 在許多 AI 任務中提供了最先進的準確性,但這也伴隨著高計算複雜度。因此,能夠有效處理深度神經網絡的技術,以改善關鍵指標——如能效、吞吐量和延遲——而不犧牲準確性或增加硬體成本,對於促進 DNNs 在 AI 系統中的廣泛部署至關重要。
本書包括 DNN 處理的背景;設計 DNN 加速器的硬體架構方法的描述和分類;評估和比較不同設計的關鍵指標;有助於硬體/算法共同設計以提高能效和吞吐量的 DNN 處理特徵;以及應用新技術的機會。讀者將會發現對該領域的結構化介紹,以及當代工作的關鍵概念的形式化和組織,這些概念提供的見解可能會激發新的想法。