Math for Programming (Paperback)
暫譯: 程式設計數學 (平裝本)
Kneusel, Ronald T.
- 出版商: No Starch Press
- 出版日期: 2025-04-22
- 售價: $1,750
- 貴賓價: 9.5 折 $1,663
- 語言: 英文
- 頁數: 504
- 裝訂: Quality Paper - also called trade paper
- ISBN: 171850358X
- ISBN-13: 9781718503588
-
相關分類:
工程數學 Engineering-mathematics
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
Essentials of Discrete Mathematics, 3/e (Hardcover)$1,350$1,323 -
不再聽不懂!圖解網站建置與開發$450$356 -
Python 函式庫語法範例字典$450$356 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
為你自己學 Git$500$425 -
Hands-On Convolutional Neural Networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and Python.$1,290$1,226 -
Python 技術者們 - 實踐! 帶你一步一腳印由初學到精通$650$553 -
Python 與 LINE Bot 機器人全面實戰特訓班 (附203分鐘影音教學/範例程式)$520$411 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
JavaScript 技術手冊$560$476 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
Deep Learning from the Basics$1,500$1,425 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
Debunking C++ Myths: Embark on an insightful journey to uncover the truths behind popular C++ myths and misconceptions (Paperback)$1,500$1,425 -
LLM 語意理解與生成技術完全開發 (Hands-On Large Language Models)$980$774
相關主題
商品描述
A one-stop-shop for all the math you should have learned for your programming career.
Every great programming challenge has mathematical principles at its heart. Whether you're optimizing search algorithms, building physics engines for games, or training neural networks, success depends on your grasp of core mathematical concepts.
In Math for Programming, you'll master the essential mathematics that will take you from basic coding to serious software development. You'll discover how vectors and matrices give you the power to handle complex data, how calculus drives optimization and machine learning, and how graph theory leads to advanced search algorithms.
Through clear explanations and practical examples, you'll learn to:
- Harness linear algebra to manipulate data with unprecedented efficiency
- Apply calculus concepts to optimize algorithms and drive simulations
- Use probability and statistics to model uncertainty and analyze data
- Master the discrete mathematics that powers modern data structures
- Solve dynamic problems through differential equations
Whether you're seeking to fill gaps in your mathematical foundation or looking to refresh your understanding of core concepts, Math for Programming will turn complex math into a practical tool you'll use every day.
商品描述(中文翻譯)
一個滿足您程式設計職業所需數學知識的一站式商店。
每一個偉大的程式設計挑戰背後都有數學原則。無論您是在優化搜尋演算法、為遊戲構建物理引擎,還是訓練神經網絡,成功都取決於您對核心數學概念的掌握。
在程式設計數學中,您將掌握從基本編碼到嚴謹軟體開發所需的基本數學知識。您將發現向量和矩陣如何使您能夠處理複雜數據,微積分如何推動優化和機器學習,以及圖論如何導致先進的搜尋演算法。
通過清晰的解釋和實用的範例,您將學會:
- 利用線性代數以空前的效率操作數據
- 應用微積分概念來優化演算法和驅動模擬
- 使用機率和統計來建模不確定性和分析數據
- 掌握驅動現代數據結構的離散數學
- 通過微分方程解決動態問題
無論您是希望填補數學基礎的空白,還是想要刷新對核心概念的理解,程式設計數學將使複雜的數學變成您每天都會使用的實用工具。
作者簡介
Ronald T. Kneusel has been working with machine learning in industry since 2003 and has a PhD in machine learning from the University of Colorado, Boulder. Kneusel is the author of Practical Deep Learning, Math for Deep Learning, The Art of Randomness, How AI Works, and Strange Code (all from No Starch Press), as well as Numbers and Computers and Random Numbers and Computers (Springer).
作者簡介(中文翻譯)
羅納德·T·克紐瑟爾自2003年以來一直在業界從事機器學習,並擁有科羅拉多大學博爾德分校的機器學習博士學位。克紐瑟爾是《實用深度學習》(Practical Deep Learning)、《深度學習數學》(Math for Deep Learning)、《隨機的藝術》(The Art of Randomness)、《人工智慧如何運作》(How AI Works)和《奇怪的程式碼》(Strange Code)的作者(均由No Starch Press出版),以及《數字與計算機》(Numbers and Computers)和《隨機數字與計算機》(Random Numbers and Computers)(Springer出版)。