Practical Deep Learning, 2nd Edition: A Python-Based Introduction
暫譯: 實用深度學習(第二版):基於 Python 的入門指南
Kneusel, Ronald T.
- 出版商: No Starch Press
- 出版日期: 2025-07-08
- 售價: $2,260
- 貴賓價: 9.5 折 $2,147
- 語言: 英文
- 頁數: 584
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1718504209
- ISBN-13: 9781718504202
-
相關分類:
Python、程式語言、DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Deep learning made simple. Dip into deep learning without drowning in theory with this fully updated edition of Practical Deep Learning from experienced author and AI expert Ronald T. Kneusel. After a brief review of basic math and coding principles, you'll dive into hands-on experiments and learn to build working models for everything from image analysis to creative writing, and gain a thorough understanding of how each technique works under the hood. Whether you're a developer looking to add AI to your toolkit or a student seeking practical machine learning skills, this book will teach you:
Each chapter emphasizes practical skill development and experimentation, building to a case study that incorporates everything you've learned to classify audio recordings. Examples of working code you can easily run and modify are provided, and all code is freely available on GitHub. With Practical Deep Learning, second edition, you'll gain the skills and confidence you need to build real AI systems that solve real problems. New to this edition: Material on computer vision, fine-tuning and transfer learning, localization, self-supervised learning, generative AI for novel image creation, and large language models for in-context learning, semantic search, and retrieval-augmented generation (RAG).
- How neural networks work and how they're trained
- How to use classical machine learning models
- How to develop a deep learning model from scratch
- How to evaluate models with industry-standard metrics
- How to create your own generative AI models
Each chapter emphasizes practical skill development and experimentation, building to a case study that incorporates everything you've learned to classify audio recordings. Examples of working code you can easily run and modify are provided, and all code is freely available on GitHub. With Practical Deep Learning, second edition, you'll gain the skills and confidence you need to build real AI systems that solve real problems. New to this edition: Material on computer vision, fine-tuning and transfer learning, localization, self-supervised learning, generative AI for novel image creation, and large language models for in-context learning, semantic search, and retrieval-augmented generation (RAG).
商品描述(中文翻譯)
深度學習簡單易懂。
透過這本經驗豐富的作者及人工智慧專家 Ronald T. Kneusel 的全新修訂版 實用深度學習,讓你在不沉浸於理論的情況下輕鬆進入深度學習的世界。在簡要回顧基本數學和編程原則後,你將進入實作實驗,學習如何建立從圖像分析到創意寫作的工作模型,並深入了解每種技術的運作原理。無論你是希望將人工智慧加入工具箱的開發者,還是尋求實用機器學習技能的學生,本書將教你:- 神經網絡的運作原理及其訓練方式
- 如何使用傳統機器學習模型
- 如何從零開始開發深度學習模型
- 如何使用行業標準指標評估模型
- 如何創建自己的生成式人工智慧模型
每一章都強調實用技能的發展和實驗,最終建立一個案例研究,將你所學的知識整合起來以分類音頻錄音。提供了可以輕鬆運行和修改的工作代碼示例,所有代碼均可在 GitHub 上免費獲得。透過 實用深度學習 第二版,你將獲得建立解決實際問題的真實人工智慧系統所需的技能和信心。本版新增內容: 有關計算機視覺、微調和遷移學習、本地化、自我監督學習、用於新穎圖像創建的生成式人工智慧,以及用於上下文學習、語義搜索和檢索增強生成(RAG)的大型語言模型的材料。
作者簡介
Ronald T. Kneusel earned a PhD in machine learning from the University of Colorado, Boulder, and has over 20 years of machine learning experience in industry. Kneusel is also the author of numerous books, including Math for Programming (2025), The Art of Randomness (2024), How AI Works (2023), Strange Code (2022), and Math for Deep Learning (2021), all from No Starch Press.
作者簡介(中文翻譯)
羅納德·T·克紐塞爾(Ronald T. Kneusel)在科羅拉多大學博爾德分校獲得機器學習博士學位,並在業界擁有超過20年的機器學習經驗。克紐塞爾還是多本書籍的作者,包括《程式設計的數學》(Math for Programming)(2025年)、《隨機的藝術》(The Art of Randomness)(2024年)、《人工智慧的運作原理》(How AI Works)(2023年)、《奇怪的程式碼》(Strange Code)(2022年)以及《深度學習的數學》(Math for Deep Learning)(2021年),這些書籍均由No Starch Press出版。