Machine Learning With R Cookbook - 110 Recipes for Building Powerful Predictive Models with R (Paperback)
暫譯: R 語言機器學習食譜 - 110 種構建強大預測模型的食譜 (平裝本)
Yu-Wei, Chiu (David Chiu)
- 出版商: Packt Publishing
- 出版日期: 2015-04-03
- 售價: $1,930
- 貴賓價: 9.5 折 $1,834
- 語言: 英文
- 頁數: 405
- 裝訂: Paperback
- ISBN: 1783982047
- ISBN-13: 9781783982042
-
相關分類:
R 語言、Machine Learning
下單後立即進貨 (約3~4週)
買這商品的人也買了...
-
機器學習:類神經網路、模糊系統以及基因演算法則, 2/e$350$315 -
Learning From Data (Hardcover)$1,200$1,176 -
R 錦囊妙計 (R Cookbook)$680$537 -
Robi 洛比 2015/07/28 (No.66) <此為過刊雜誌,恕不接受退貨及取消訂單>$599$569 -
實用 R 程式設計$420$332 -
養成 iOS 8 App 程式設計實力的 25 堂課-最新 Swift 開發教學(A Practical Guide to Building Your First App from Scratch: Beginning iOS 8 Programming with Swift)$580$452 -
HM-10 BLE 藍牙模組 CC2541$380$361 -
OpenCV 程式設計參考手冊$620$490 -
$825Machine Learning with R, 2/e (Paperback) -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
黑帽 Python | 給駭客與滲透測試者的 Python 開發指南 (Black Hat Python: Python Programming for Hackers and Pentesters)$400$316 -
Hadoop + Spark 大數據巨量分析與機器學習整合開發實戰$620$484 -
R語言資料分析活用範例詳解$520$442 -
ASP.NET 專題實務 II--範例應用與進階功能$820$648 -
Mastering Text Mining with R(Paperback)$1,640$1,558 -
$414Python 密碼學編程 -
寫給 PM、RD 與設計師看的設計需求分析─使用者想要的應用程式都是這樣打造出來的 (Designing the Requirements: Building Applications that the User Wants and Needs)$580$458 -
The Linux Programming Interface 國際中文版 (下冊)$800$680 -
比 Hadoop+Python 還強:Spark MLlib 機器學習實作$480$408 -
UX 從新手開始|使用者體驗的 100堂必修課 (UX for Beginners: A Crash Course in 100 Short Lessons)$480$379 -
Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Paperback)$3,600$3,420 -
Effective C# 中文版 | 寫出良好 C# 程式的 50個具體做法, 3/e (Effective C# : 50 Specific Ways to Improve Your C#(Covers C# 6.0), 3/e)$450$356 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308
相關主題
商品描述
Explore over 110 recipes to analyze data and build predictive models with the simple and easy-to-use R code
About This Book
- Apply R to simplify predictive modeling with short and simple code
- Use machine learning to solve problems ranging from small to big data
- Build a training and testing dataset from the churn dataset,applying different classification methods.
Who This Book Is For
If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.
In Detail
The R language is a powerful open source functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics.
This book covers the basics of R by setting up a user-friendly programming environment and performing data ETL in R. Data exploration examples are provided that demonstrate how powerful data visualization and machine learning is in discovering hidden relationships. You will then dive into important machine learning topics, including data classification, regression, clustering, association rule mining, and dimension reduction.
商品描述(中文翻譯)
探索超過 110 種食譜,使用簡單易用的 R 代碼來分析數據和建立預測模型
本書介紹
- 應用 R 簡化預測建模,使用簡短且簡單的代碼
- 利用機器學習解決從小型到大型數據的問題
- 從流失數據集建立訓練和測試數據集,應用不同的分類方法。
本書適合誰
如果您想學習如何使用 R 進行機器學習並從數據中獲取見解,那麼這本書非常適合您。無論您的經驗水平如何,本書涵蓋了從 R 應用於機器學習的基礎知識到進階技術。雖然如果您熟悉基本的編程或機器學習概念會有所幫助,但您不需要有先前的經驗即可從本書中受益。
詳細內容
R 語言是一種強大的開源函數式編程語言。R 的核心是一種統計編程語言,提供了強大的工具來分析數據並創建高級圖形。
本書通過設置用戶友好的編程環境和在 R 中執行數據 ETL 來涵蓋 R 的基礎知識。提供數據探索示例,展示數據可視化和機器學習在發現隱藏關係方面的強大功能。然後,您將深入探討重要的機器學習主題,包括數據分類、回歸、聚類、關聯規則挖掘和降維。
