Machine Learning With Go
暫譯: 使用 Go 的機器學習
Daniel Whitenack
- 出版商: Packt Publishing
- 出版日期: 2017-09-25
- 定價: $1,650
- 售價: 6.0 折 $990
- 語言: 英文
- 頁數: 304
- 裝訂: Paperback
- ISBN: 1785882104
- ISBN-13: 9781785882104
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習 : Go語言實現 (Machine Learning With Go) (簡中版)
立即出貨(限量) (庫存=1)
買這商品的人也買了...
-
無瑕的程式碼-敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
Visual C# 與 Xamarin 跨平台行動 App 開發實戰 ─ iOS/Android/Windows 一次搞定$500$425 -
Cracking the Coding Interview : 189 Programming Questions and Solutions, 6/e (Paperback)$1,700$1,615 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
機器學習$648$616 -
$534Spring 實戰, 4/e (Spring in Action, 4/e) -
Android App 程式設計教本之無痛起步 -- 使用 Android Studio 2.X 開發環境$580$458 -
圖解雲端技術|基礎架構x運作原理 x API$480$379 -
$454Spring Cloud 微服務實戰 -
Laravel 啟動與運行 (Laravel: Up and Running: A Framework for Building Modern PHP Apps)$780$616 -
MySQL 與 MariaDB 學習手冊 (Learning MySQL and MariaDB: Heading in the Right Direction with MySQL and MariaDB)$680$537 -
Effective C# 中文版 | 寫出良好 C# 程式的 50個具體做法, 3/e (Effective C# : 50 Specific Ways to Improve Your C#(Covers C# 6.0), 3/e)$450$356 -
實戰物聯網開發|使用 ESP8266 (Internet of Things with ESP8266)$380$300 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Docker 入門與實戰, 2/e$500$395 -
$857深度學習 -
初探機器學習|使用 Python (Thoughtful Machine Learning with Python)$480$379 -
單元測試的藝術, 2/e (The Art of Unit Testing: with examples in C#, 2/e)$650$507 -
iOS 11 程式設計實戰 -- Swift 4 快速上手的開發技巧200+$580$458 -
用 Python 開發經典遊戲 (Python Game Programming By Example)$420$328 -
Python 也可以這樣學$580$452 -
3D珠寶設計:現代設計師一定要會的 RhinoGold 飾品創作與 3D繪製列印$620$558 -
Python:期貨演算法交易實務 121個關鍵技巧詳解$500$390
商品描述
Key Features
- Build simple, but powerful, machine learning applications that leverage Go’s standard library along with popular Go packages.
- Learn the statistics, algorithms, and techniques needed to successfully implement machine learning in Go
- Understand when and how to integrate certain types of machine learning model in Go applications.
Book Description
The mission of this book is to turn readers into productive, innovative data analysts who leverage Go to build robust and valuable applications. To this end, the book clearly introduces the technical aspects of building predictive models in Go, but it also helps the reader understand how machine learning workflows are being applied in real-world scenarios.
Machine Learning with Go shows readers how to be productive in machine learning while also producing applications that maintain a high level of integrity. It also gives readers patterns to overcome challenges that are often encountered when trying to integrate machine learning in an engineering organization.
The readers will begin by gaining a solid understanding of how to gather, organize, and parse real-work data from a variety of sources. Readers will then develop a solid statistical toolkit that will allow them to quickly understand gain intuition about the content of a dataset. Finally, the readers will gain hands-on experience implementing essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages.
Finally, the reader will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations.
What you will learn
- Learn about data gathering, organization, parsing, and cleaning.
- Explore matrices, linear algebra, statistics, and probability.
- See how to evaluate and validate models.
- Look at regression, classification, clustering.
- Learn about neural networks and deep learning
- Utilize times series models and anomaly detection.
- Get to grip with techniques for deploying and distributing analyses and models.
- Optimize machine learning workflow techniques
About the Author
Daniel Whitenack (@dwhitena), PhD, is a trained data scientist working with Pachyderm (@pachydermIO). Daniel develops innovative, distributed data pipelines that include predictive models, data visualizations, statistical analyses, and more. He has spoken at conferences around the world (GopherCon, JuliaCon, PyCon, ODSC, Spark Summit, and more), teaches data science/engineering at Purdue University (@LifeAtPurdue), and, with Ardan Labs (@ardanlabs), maintains the Go kernel for Jupyter, and is actively helping to organize contributions to various open source data science projects.
Table of Contents
- Gathering and Organizing Data
- Matrices, Probability, and Statistics
- Evaluation and Validation
- Regression
- Classification
- Clustering
- Time Series and Anomaly Detection
- Neural Networks and “Deep” Learning
- Deploying and distributing Analyses and Models
- Appendix: Algorithms/Techniques Related to ML
商品描述(中文翻譯)
#### 主要特點
- 建立簡單但強大的機器學習應用程式,利用 Go 的標準庫以及流行的 Go 套件。
- 學習在 Go 中成功實現機器學習所需的統計學、演算法和技術。
- 了解何時以及如何在 Go 應用程式中整合某些類型的機器學習模型。
#### 書籍描述
本書的使命是將讀者轉變為高效且具創新能力的數據分析師,利用 Go 建立穩健且有價值的應用程式。為此,本書清楚地介紹了在 Go 中構建預測模型的技術方面,同時幫助讀者理解機器學習工作流程在現實場景中的應用。
《Machine Learning with Go》向讀者展示了如何在機器學習中提高生產力,同時產生保持高完整性的應用程式。它還提供了克服在工程組織中整合機器學習時常遇到的挑戰的模式。
讀者將首先獲得如何從各種來源收集、組織和解析實際數據的堅實理解。接著,讀者將發展出一套穩固的統計工具包,使他們能夠快速理解數據集的內容。最後,讀者將獲得實踐經驗,使用相關的 Go 套件實現基本的機器學習技術(回歸、分類、聚類等)。
最後,讀者將擁有堅實的機器學習思維模式和強大的 Go 技術工具包,包括技術、套件和範例實現。
#### 您將學到的內容
- 學習數據收集、組織、解析和清理。
- 探索矩陣、線性代數、統計學和概率。
- 了解如何評估和驗證模型。
- 研究回歸、分類、聚類。
- 學習神經網絡和深度學習。
- 利用時間序列模型和異常檢測。
- 掌握部署和分發分析及模型的技術。
- 優化機器學習工作流程技術。
#### 關於作者
**Daniel Whitenack** (@dwhitena),博士,是一位受過訓練的數據科學家,現任職於 Pachyderm (@pachydermIO)。Daniel 開發創新的分佈式數據管道,包括預測模型、數據可視化、統計分析等。他曾在全球各地的會議上發表演講(GopherCon、JuliaCon、PyCon、ODSC、Spark Summit 等),在普渡大學 (@LifeAtPurdue) 教授數據科學/工程,並與 Ardan Labs (@ardanlabs) 一起維護 Jupyter 的 Go 核心,積極協助組織對各種開源數據科學項目的貢獻。
#### 目錄
1. 數據的收集與組織
2. 矩陣、概率與統計
3. 評估與驗證
4. 回歸
5. 分類
6. 聚類
7. 時間序列與異常檢測
8. 神經網絡與「深度」學習
9. 部署與分發分析及模型
10. 附錄:與機器學習相關的演算法/技術
