Mastering .NET Machine Learning
            
暫譯: 精通 .NET 機器學習
        
        Jamie Dixon
- 出版商: Packt Publishing
- 出版日期: 2016-03-29
- 售價: $2,120
- 貴賓價: 9.5 折 $2,014
- 語言: 英文
- 頁數: 358
- 裝訂: Paperback
- ISBN: 1785888404
- ISBN-13: 9781785888403
- 
    相關分類:
    
      Machine Learning、.NET
 
海外代購書籍(需單獨結帳)
買這商品的人也買了...
- 
                
                   嵌入式系統設計實務-電路與驅動程式 嵌入式系統設計實務-電路與驅動程式$250$225
- 
                
                   Using SQLite (Paperback) Using SQLite (Paperback)$1,800$1,710
- 
                
                   ASP.NET 本質論 ASP.NET 本質論$520$442
- 
                
                   $700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback) $700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback)
- 
                
                   Reactive Programming for .NET Developers Reactive Programming for .NET Developers$1,770$1,682
- 
                
                   .NET Development Using the Compiler API .NET Development Using the Compiler API$1,540$1,463
- 
                
                   IoT Solutions in Microsoft's Azure IoT Suite: Data Acquisition and Analysis in the Real World IoT Solutions in Microsoft's Azure IoT Suite: Data Acquisition and Analysis in the Real World$3,300$3,135
- 
                
                   $796深度學習 $796深度學習
- 
                
                   演算法之美:隱藏在資料結構背後的原理 (C++版) 演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507
- 
                
                   $534JSON 實戰 $534JSON 實戰
- 
                
                   世界第一簡單機器學習 世界第一簡單機器學習$320$272
- 
                
                   $284大數據技術 $284大數據技術
- 
                
                   手機攝影必學 BOOK:用OX帶你學會拍人物、食物、風景等情境照片 手機攝影必學 BOOK:用OX帶你學會拍人物、食物、風景等情境照片$398$299
- 
                
                   創意競擇:從賈伯斯黃金年代的軟體設計機密流程,窺見蘋果的創意方法、本質與卓越關鍵 創意競擇:從賈伯斯黃金年代的軟體設計機密流程,窺見蘋果的創意方法、本質與卓越關鍵$460$391
- 
                
                   Web 開發者一定要懂的駭客攻防術 (Web Security for Developers: Real Threats, Practical Defense) Web 開發者一定要懂的駭客攻防術 (Web Security for Developers: Real Threats, Practical Defense)$420$332
- 
                
                   資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步 資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473
- 
                
                   Martin Fowler 的企業級軟體架構模式:軟體重構教父傳授 51個模式,活用設計思考與架構決策 (Patterns of Enterprise Application Architecture) Martin Fowler 的企業級軟體架構模式:軟體重構教父傳授 51個模式,活用設計思考與架構決策 (Patterns of Enterprise Application Architecture)$800$624
- 
                
                   我懂了!專案管理 (暢銷紀念版) 我懂了!專案管理 (暢銷紀念版)$400$316
- 
                
                   電腦視覺機器學習實務|建立端到端的影像機器學習 (Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images) 電腦視覺機器學習實務|建立端到端的影像機器學習 (Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images)$780$616
- 
                
                   Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback) Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback)$2,185$2,070
- 
                
                   ASP.NET Core Razor Pages in Action (Paperback) ASP.NET Core Razor Pages in Action (Paperback)$2,300$2,185
- 
                
                   無瑕的程式碼 軟體工匠篇:程式設計師必須做到的紀律、標準與倫理 (Clean Craftsmanship: Disciplines, Standards, and Ethics) 無瑕的程式碼 軟體工匠篇:程式設計師必須做到的紀律、標準與倫理 (Clean Craftsmanship: Disciplines, Standards, and Ethics)$720$562
- 
                
                   從源頭就優化 - 動手開發自己的編譯器實戰 從源頭就優化 - 動手開發自己的編譯器實戰$880$695
- 
                
                   UX 商業價值實現之道|打造成功的數位產品服務 (UX for Business: How to Design Valuable Digital Companies) UX 商業價值實現之道|打造成功的數位產品服務 (UX for Business: How to Design Valuable Digital Companies)$780$616
- 
                
                   建構可擴展系統|設計分散式架構 (Foundations of Scalable Systems: Designing Distributed Architectures) 建構可擴展系統|設計分散式架構 (Foundations of Scalable Systems: Designing Distributed Architectures)$780$616
商品描述
About This Book
- Based on .NET framework 4.6.1, includes examples on ASP.NET Core 1.0
- Set up your business application to start using machine learning techniques
- Familiarize the user with some of the more common .NET libraries for machine learning
- Implement several common machine learning techniques
- Evaluate, optimize and adjust machine learning models
Who This Book Is For
This book is targeted at .NET developers who want to build complex machine learning systems. Some basic understanding of data science is required.
What You Will Learn
- Write your own machine learning applications and experiments using the latest .NET Framework, including .NET Core 1.0
- Set up your business application to start using machine learning
- Accurately predict the future of your data using simple, multiple, and logistic regressions
- Discover hidden patterns using decision trees
- Acquire, prepare, and combine datasets to drive insights
- Optimize business throughput using Bayes Classifier
- Discover (more) hidden patterns using k-NN and Naive Bayes
- Discover (even more) hidden patterns using k-means and PCA
- Use Neural Networks to improve business decision making while using the latest ASP.NET technologies
In Detail
.NET is one of the widely used platforms for developing applications. With the meteoric rise of machine learning, developers are now keen on finding out how to make their .NET applications smarter using machine learning.
Mastering .NET Machine Learning is packed with real-world examples to explain how to easily use machine learning techniques in your business applications. You will begin with an introduction to F# and prepare yourselves for machine learning using the .NET Framework. You will then learn how to write a simple linear regression model and, forming a base with the regression model, you will start using machine learning libraries available in .NET Framework such as Math.NET, numl, and Accord.NET with examples. Next, you are going to take a deep dive into obtaining, cleaning, and organizing your data. You will learn the implementation of k-means and PCA using Accord.NET and numl libraries. You will be using Neural Networks, AzureML, and Accord.NET to transform your application into a hybrid scientific application. You will also see how to deal with very large datasets using MBrace and deploy machine learning models to IoT devices so that the machine can learn and adapt on the fly.
商品描述(中文翻譯)
關於本書  
- 基於 .NET Framework 4.6.1,包含 ASP.NET Core 1.0 的範例  
- 設置您的商業應用程式以開始使用機器學習技術  
- 讓使用者熟悉一些常見的 .NET 機器學習庫  
- 實現幾種常見的機器學習技術  
- 評估、優化和調整機器學習模型  
本書適合對象  
本書針對希望構建複雜機器學習系統的 .NET 開發人員。需要對數據科學有一些基本的理解。  
您將學到什麼  
- 使用最新的 .NET Framework(包括 .NET Core 1.0)編寫自己的機器學習應用程式和實驗  
- 設置您的商業應用程式以開始使用機器學習  
- 使用簡單的、多元的和邏輯回歸準確預測您的數據未來  
- 使用決策樹發現隱藏的模式  
- 獲取、準備和結合數據集以推動洞察  
- 使用貝葉斯分類器優化商業吞吐量  
- 使用 k-NN 和 Naive Bayes 發現(更多)隱藏的模式  
- 使用 k-means 和 PCA 發現(甚至更多)隱藏的模式  
- 使用神經網絡改善商業決策,同時使用最新的 ASP.NET 技術  
詳細內容  
.NET 是一個廣泛使用的應用程式開發平台。隨著機器學習的迅速崛起,開發人員現在熱衷於了解如何利用機器學習使他們的 .NET 應用程式更智能。  
《掌握 .NET 機器學習》充滿了現實世界的範例,解釋如何輕鬆地在您的商業應用程式中使用機器學習技術。您將從 F# 的介紹開始,為使用 .NET Framework 進行機器學習做好準備。接著,您將學習如何編寫一個簡單的線性回歸模型,並以回歸模型為基礎,開始使用 .NET Framework 中可用的機器學習庫,如 Math.NET、numl 和 Accord.NET,並附上範例。接下來,您將深入了解如何獲取、清理和組織您的數據。您將學習使用 Accord.NET 和 numl 庫實現 k-means 和 PCA。您將使用神經網絡、AzureML 和 Accord.NET 將您的應用程式轉變為混合科學應用程式。您還將看到如何使用 MBrace 處理非常大的數據集,並將機器學習模型部署到 IoT 設備上,以便機器能夠即時學習和適應。

 
     
     
     
     
     
     
     
     
     
     
    
 
     
     
     
     
     
    
 
     
     
     
     
     
    
 
     
     
    
 
     
     
    