Mastering Concurrency in Python: Create faster programs using concurrency, asynchronous, multithreading, and parallel programming
暫譯: 精通 Python 的併發:使用併發、非同步、多執行緒和平行程式設計創建更快的程式
Quan Nguyen
- 出版商: Packt Publishing
- 出版日期: 2018-11-24
- 售價: $1,760
- 貴賓價: 9.5 折 $1,672
- 語言: 英文
- 頁數: 446
- 裝訂: Paperback
- ISBN: 1789343054
- ISBN-13: 9781789343052
-
相關分類:
Python
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$294圖數據庫, 2/e (Graph Databases: New Opportunities for Connected Data, 2/e) -
不止是測試:Python 網路爬蟲王者 Selenium$560$476 -
Learning Concurrency in Python$1,760$1,672 -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
Python 網頁程式交易 APP 實作:Web + MySQL + Django$680$530 -
PHP、MySQL 與 JavaScript 學習手冊, 5/e (Learning PHP , MySQL & JavaScript : With jQuery, CSS & HTML5, 5/e)$980$774 -
圖形演算法|Apache Spark 與 Neo4j 實務範例 (Graph Algorithms)$580$458 -
Python 神乎其技 全新超譯版 - 快速精通 Python 進階功能, 寫出 Pythonic 的程式 (Python Tricks: A Buffet of Awesome Python Features)$580$493 -
東京大學資料科學家養成全書:使用 Python 動手學習資料分析$780$663 -
D3 實用指南|程式設計師和科學家的互動式圖形工具箱 (D3 for the Impatient : Interactive Graphics for Programmers and Scientists)$520$411 -
Python 非同步設計|使用 Asyncio (Using Asyncio in Python )$480$379 -
社群網站的資料探勘, 3/e (Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More, 3/e)$780$616 -
Python 功力提升的樂趣|寫出乾淨程式碼的最佳實務 (Beyond the Basic Stuff with Python)$500$375 -
會動的演算法:61 個演算法動畫+全圖解逐步拆解,人工智慧、資料分析必備$620$490 -
Python 大數據專案 X 工程 X 產品 資料工程師的升級攻略, 2/e$780$616
商品描述
Immerse yourself in the world of Python concurrency and tackle the most complex concurrent programming problems
Key Features
- Explore the core syntaxes, language features and modern patterns of concurrency in Python
- Understand how to use concurrency to keep data consistent and applications responsive
- Utilize application scaffolding to design highly-scalable programs
Book Description
Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming.
Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples.
By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language
What you will learn
- Explore the concepts of concurrency in programming
- Explore the core syntax and features that enable concurrency in Python
- Understand the correct way to implement concurrency
- Abstract methods to keep the data consistent in your program
- Analyze problems commonly faced in concurrent programming
- Use application scaffolding to design highly-scalable programs
Who this book is for
This book is for developers who wish to build high-performance applications and learn about signle-core, multicore programming or distributed concurrency. Some experience with Python programming language is assumed.
Table of Contents
- Concurrent and Parallel Programming - An Advanced Introduction
- Amdahl's Law
- Working with Threads in Python
- Using the �with' Statement in Threads
- Concurrent Web Scraping
- Working with Processes in Python
- The Reduction Operation in Processes
- Concurrent Image Processing
- Introduction to Asynchronous I/O
- Asyncio: Pros and Cons
- TCP with Asyncio
- Deadlock
- Starvation
- Race Conditions
- The Global Interpreter Lock
- Designing Lock-Free and Lock-Based Concurrent Data Structures
- Memory Models and Operations on Atomic Types
- Building a Server from Scratch
- Testing, Debugging, and Scheduling Concurrent Applications
商品描述(中文翻譯)
沉浸於 Python 的併發世界,解決最複雜的併發程式設計問題
主要特點
- 探索 Python 中併發的核心語法、語言特性和現代模式
- 理解如何使用併發來保持數據一致性和應用程式的響應性
- 利用應用程式框架設計高可擴展的程式
書籍描述
Python 是最受歡迎的程式語言之一,擁有眾多庫和框架,促進高效能計算。在 Python 中,併發和並行處理在多處理和多執行緒方面至關重要;它們的行為不同,但共同的目標是減少執行時間。本書作為併發工程和程式設計中各種進階概念的全面介紹。
《掌握 Python 中的併發》首先介紹併發的概念和原則,從 Amdahl 法則到多執行緒程式設計,接著闡述多處理程式設計、網頁爬蟲和非同步 I/O,以及工程師和程式設計師在併發程式設計中面臨的常見問題。接下來,本書涵蓋了 Python 併發中的多個進階概念及其與 Python 生態系統的互動,包括全域解譯器鎖(Global Interpreter Lock, GIL)。最後,您將通過範例學習如何解決現實世界中的併發問題。
在本書結束時,您將獲得有關併發的廣泛理論知識,以及 Python 語言如何支持併發的方式。
您將學到的內容
- 探索程式設計中的併發概念
- 探索使 Python 能夠實現併發的核心語法和特性
- 理解正確實現併發的方法
- 抽象方法以保持程式中的數據一致性
- 分析併發程式設計中常見的問題
- 使用應用程式框架設計高可擴展的程式
本書適合對象
本書適合希望構建高效能應用程式並學習單核心、多核心程式設計或分散式併發的開發人員。假設讀者對 Python 程式語言有一定的經驗。
目錄
1. 併發與並行程式設計 - 進階介紹
2. Amdahl 法則
3. 在 Python 中使用執行緒
4. 在執行緒中使用 'with' 語句
5. 併發網頁爬蟲
6. 在 Python 中使用進程
7. 進程中的歸約操作
8. 併發圖像處理
9. 非同步 I/O 介紹
10. Asyncio:優缺點
11. 使用 Asyncio 的 TCP
12. 死鎖
13. 餓死
14. 競爭條件
15. 全域解譯器鎖
16. 設計無鎖和有鎖的併發數據結構
17. 記憶體模型和原子類型的操作
18. 從零開始構建伺服器
19. 測試、除錯和排程併發應用程式
