Learn Amazon SageMaker

Simon, Julien

  • 出版商: Packt Publishing
  • 出版日期: 2020-08-27
  • 售價: $1,450
  • 貴賓價: 9.5$1,378
  • 語言: 英文
  • 頁數: 490
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 180020891X
  • ISBN-13: 9781800208919
  • 相關分類: Computer Vision 電腦視覺

立即出貨 (庫存=1)

相關主題

商品描述

Quickly build and deploy machine learning models without managing infrastructure, and improve productivity using Amazon SageMaker's capabilities such as Amazon SageMaker Studio, Autopilot, Experiments, Debugger, and Model Monitor

Key Features

  • Build, train, and deploy machine learning models quickly using Amazon SageMaker
  • Analyze, detect, and receive alerts relating to various business problems using machine learning algorithms and techniques
  • Improve productivity by training and fine-tuning machine learning models in production

Book Description

Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker.

You'll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you'll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You'll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you'll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy.

By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.

What you will learn

  • Create and automate end-to-end machine learning workflows on Amazon Web Services (AWS)
  • Become well-versed with data annotation and preparation techniques
  • Use AutoML features to build and train machine learning models with AutoPilot
  • Create models using built-in algorithms and frameworks and your own code
  • Train computer vision and NLP models using real-world examples
  • Cover training techniques for scaling, model optimization, model debugging, and cost optimization
  • Automate deployment tasks in a variety of configurations using SDK and several automation tools

Who this book is for

This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. Some understanding of machine learning concepts and the Python programming language will also be beneficial.

作者簡介

Julien Simon is a principal AI and machine learning developer advocate. He focuses on helping developers and enterprises to bring their ideas to life. He frequently speaks at conferences and blogs on AWS blogs and on Medium. Prior to joining AWS, Julien served for 10 years as CTO/VP of engineering in top-tier web start-ups where he led large software and ops teams in charge of thousands of servers worldwide. In the process, he fought his way through a wide range of technical, business, and procurement issues, which helped him gain a deep understanding of physical infrastructure, its limitations, and how cloud computing can help.

目錄大綱

  1. Getting Started with Amazon SageMaker
  2. Handling Data Preparation Techniques
  3. AutoML with Amazon SageMaker AutoPilot
  4. Training Machine Learning Models
  5. Training Computer Vision Models
  6. Training Natural Language Processing Models
  7. Extending Machine Learning Services Using Built-In Frameworks
  8. Using Your Algorithms and Code
  9. Scaling Your Training Jobs
  10. Advanced Training Techniques
  11. Deploying Machine Learning Models
  12. Automating Machine Learning Workflows
  13. Optimizing Prediction Cost and Performance