Time Series Analysis with Python Cookbook - Second Edition: Practical recipes for the complete time series workflow, from modern data engineering to a
暫譯: Python 時間序列分析食譜 - 第二版:完整時間序列工作流程的實用食譜,從現代數據工程到

Atwan, Tarek A.

  • 出版商: Packt Publishing
  • 出版日期: 2026-01-23
  • 售價: $2,210
  • 貴賓價: 9.5$2,100
  • 語言: 英文
  • 頁數: 812
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1805124285
  • ISBN-13: 9781805124283
  • 相關分類: Python
  • 尚未上市,無法訂購

相關主題

商品描述

Perform time series analysis and forecasting confidently with this Python code bank and reference manual.

Access exclusive GitHub bonus chapters and hands-on recipes covering Python setup, probabilistic deep learning forecasts, frequency-domain analysis, large-scale data handling, databases, InfluxDB, and advanced visualizations.

Purchase of the print or Kindle book includes a free PDF eBook

Key Features:

- Explore up-to-date forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms

- Learn different techniques for evaluating, diagnosing, and optimizing your models

- Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities

Book Description:

To use time series data to your advantage, you need to master data preparation, analysis, and forecasting. This fully refreshed second edition helps you unlock insights from time series data with new chapters on probabilistic models, signal processing techniques, and new content on transformers. You'll work with the latest releases of popular libraries like Pandas, Polars, Sktime, stats models, stats forecast, Darts, and Prophet through up-to-date examples.

You'll hit the ground running by ingesting time series data from various sources and formats and learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods.

Through detailed instructions, you'll explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR, and learn practical techniques for handling non-stationary data using power transforms, ACF and PACF plots, and decomposing time series data with seasonal patterns. The recipes then level up to cover more advanced topics such as building ML and DL models using TensorFlow and PyTorch and applying probabilistic modeling techniques. In this part, you'll also be able to evaluate, compare, and optimize models, finishing with a strong command of wrangling data with Python.

What You Will Learn:

- Understand what makes time series data different from other data

- Apply imputation and interpolation strategies to handle missing data

- Implement an array of models for univariate and multivariate time series

- Plot interactive time series visualizations using hvPlot

- Explore state-space models and the unobserved components model (UCM)

- Detect anomalies using statistical and machine learning methods

- Forecast complex time series with multiple seasonal patterns

- Use conformal prediction for constructing prediction intervals for time series

Who this book is for:

This book is for data analysts, business analysts, data scientists, data engineers, and Python developers who want to learn time series analysis and forecasting techniques step by step through practical Python recipes.

To get the most out of this book, you'll need fundamental Python programming knowledge. Prior experience working with time series data to solve business problems will help you to better utilize and apply the recipes more quickly.

Table of Contents

- Getting Started with Time Series Analysis

- Reading Time Series Data from Files

- Reading Time Series Data from Databases

- Persisting Time Series Data to Files

- Persisting Time Series Data to Databases

- Working with Date and Time in Python

- Handling Missing Data

- Outlier Detection Using Statistical Methods

- Exploratory Data Analysis and Diagnosis

- Building Univariate Models Using Statistical Methods

(N.B. Please use the Read Sample option to see further chapters)

商品描述(中文翻譯)

自信地使用這個 Python 代碼庫和參考手冊進行時間序列分析和預測。

訪問獨家的 GitHub 附加章節和涵蓋 Python 設置、概率深度學習預測、頻域分析、大規模數據處理、數據庫、InfluxDB 和高級可視化的實用食譜。

購買印刷版或 Kindle 書籍包括免費的 PDF 電子書

主要特點:

- 探索使用統計、機器學習和深度學習算法的最新預測和異常檢測技術
- 學習評估、診斷和優化模型的不同技術
- 處理具有趨勢、多季節模式和不規則性的各種複雜數據

書籍描述:

要利用時間序列數據,您需要掌握數據準備、分析和預測。這本完全更新的第二版幫助您從時間序列數據中解鎖洞察,新增了有關概率模型、信號處理技術和變壓器的新章節。您將通過最新版本的流行庫,如 Pandas、Polars、Sktime、stats models、stats forecast、Darts 和 Prophet,進行最新的示例操作。

您將迅速開始,從各種來源和格式中導入時間序列數據,並學習處理缺失數據、處理時區和自定義工作日的策略,以及使用直觀的統計方法檢測異常。

通過詳細的指導,您將探索使用經典統計模型(如 Holt-Winters、SARIMA 和 VAR)進行預測,並學習使用功率變換、ACF 和 PACF 圖以及分解具有季節模式的時間序列數據來處理非平穩數據的實用技術。隨後的食譜將涵蓋更高級的主題,例如使用 TensorFlow 和 PyTorch 構建機器學習和深度學習模型,以及應用概率建模技術。在這部分中,您還將能夠評估、比較和優化模型,最終熟練掌握使用 Python 整理數據的技巧。

您將學到什麼:

- 理解時間序列數據與其他數據的不同之處
- 應用插補和內插策略來處理缺失數據
- 實現多種單變量和多變量時間序列模型
- 使用 hvPlot 繪製互動式時間序列可視化
- 探索狀態空間模型和未觀察組件模型(UCM)
- 使用統計和機器學習方法檢測異常
- 預測具有多季節模式的複雜時間序列
- 使用符合預測構建時間序列的預測區間

本書適合誰:

本書適合數據分析師、商業分析師、數據科學家、數據工程師和希望通過實用的 Python 食譜逐步學習時間序列分析和預測技術的 Python 開發者。

為了充分利用本書,您需要具備基本的 Python 編程知識。之前有使用時間序列數據解決商業問題的經驗將幫助您更快地利用和應用這些食譜。

目錄

- 開始時間序列分析
- 從文件中讀取時間序列數據
- 從數據庫中讀取時間序列數據
- 將時間序列數據持久化到文件
- 將時間序列數據持久化到數據庫
- 在 Python 中處理日期和時間
- 處理缺失數據
- 使用統計方法檢測異常值
- 探索性數據分析和診斷
- 使用統計方法構建單變量模型
- (注意:請使用閱讀範本選項查看後續章節)