Building Natural Language and LLM Pipelines: Build production-grade RAG, tool contracts, and context engineering with Haystack and LangGraph
暫譯: 構建自然語言與大型語言模型管道:使用 Haystack 和 LangGraph 建立生產級 RAG、工具合約及上下文工程
Funderburk, Laura
- 出版商: Packt Publishing
- 出版日期: 2025-12-30
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 338
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1835467997
- ISBN-13: 9781835467992
-
相關分類:
LangChain
海外代購書籍(需單獨結帳)
相關主題
商品描述
Stop LLM applications from breaking in production. Build deterministic pipelines, enforce strict tool contracts, engineer high-signal context for RAG, and orchestrate resilient multi-agent workflows using two foundational frameworks: Haystack for pipelines and LangGraph for low-level agent orchestration.
DRM-free PDF version + access to Packt's next-gen Reader*
Key Features:
- Design reproducible LLM pipelines using typed components and strict tool contracts
- Build resilient multi-agent systems with LangGraph and modular microservices
- Evaluate and monitor pipeline performance with Ragas and Weights & Biases
Book Description:
Modern LLM applications often break in production due to brittle pipelines, loose tool definitions, and noisy context. This book shows you how to build production-ready, context-aware systems using Haystack and LangGraph. You'll learn to design deterministic pipelines with strict tool contracts and deploy them as microservices. Through structured context engineering, you'll orchestrate reliable agent workflows and move beyond simple prompt-based interactions.
You'll start by understanding LLM behavior-tokens, embeddings, and transformer models-and see how prompt engineering has evolved into a full context engineering discipline. Then, you'll build retrieval-augmented generation (RAG) pipelines with retrievers, rankers, and custom components using Haystack's graph-based architecture. You'll also create knowledge graphs, synthesize unstructured data, and evaluate system behavior using Ragas and Weights & Biases. In LangGraph, you'll orchestrate agents with supervisor-worker patterns, typed state machines, retries, fallbacks, and safety guardrails.
By the end of the book, you'll have the skills to design scalable, testable LLM pipelines and multi-agent systems that remain robust as the AI ecosystem evolves.
*Email sign-up and proof of purchase required
What You Will Learn:
- Build structured retrieval pipelines with Haystack
- Apply context engineering to improve agent performance
- Serve pipelines as LangGraph-compatible microservices
- Use LangGraph to orchestrate multi-agent workflows
- Deploy REST APIs using FastAPI and Hayhooks
- Track cost and quality with Ragas and Weights & Biases
- Implement retries, circuit breakers, and observability
- Design sovereign agents for high-volume local execution
Who this book is for:
LLM engineers, NLP developers, and data scientists looking to build production-grade pipelines, agentic workflows, or RAG systems. Ideal for tech leads looking to move beyond prototypes to scalable, testable solutions, as well as teams modernizing legacy NLP pipelines into orchestration-ready microservices. Proficiency in Python and familiarity with core NLP concepts are recommended.
Table of Contents
- Introduction to Natural Language Processing Pipelines
- Diving Deep into Large Language Models
- Introduction to Haystack by deepset
- Bringing Components Together - Haystack Pipelines for Different Use Cases
- Haystack Pipeline Development with Custom Components
- Building Reproducible and Production-Ready RAG Systems
- Deploying Haystack-Based Applications
- Hands-on Projects
- Future Trends and Beyond
- Epilogue: The Architecture of Agentic AI
商品描述(中文翻譯)
停止 LLM 應用在生產環境中出現故障。建立確定性管道,強制執行嚴格的工具合約,為 RAG 工程高信號上下文,並使用兩個基礎框架協調韌性的多代理工作流程:Haystack 用於管道,LangGraph 用於低層次的代理協調。
無 DRM 的 PDF 版本 + 訪問 Packt 的下一代 Reader*
主要特點:
- 使用類型化組件和嚴格的工具合約設計可重現的 LLM 管道
- 使用 LangGraph 和模組化微服務構建韌性的多代理系統
- 使用 Ragas 和 Weights & Biases 評估和監控管道性能
書籍描述:
現代 LLM 應用經常因為脆弱的管道、鬆散的工具定義和嘈雜的上下文而在生產環境中出現故障。本書將向您展示如何使用 Haystack 和 LangGraph 構建生產就緒的上下文感知系統。您將學會設計具有嚴格工具合約的確定性管道並將其作為微服務部署。通過結構化的上下文工程,您將協調可靠的代理工作流程,並超越簡單的提示基礎互動。
您將首先了解 LLM 行為、標記、嵌入和變壓器模型,並看到提示工程如何演變為一個完整的上下文工程學科。然後,您將使用 Haystack 的圖形架構構建檢索增強生成 (RAG) 管道,並使用檢索器、排名器和自定義組件。您還將創建知識圖,合成非結構化數據,並使用 Ragas 和 Weights & Biases 評估系統行為。在 LangGraph 中,您將使用監督-工作者模式、類型化狀態機、重試、回退和安全防護措施來協調代理。
到書籍結束時,您將具備設計可擴展、可測試的 LLM 管道和多代理系統的技能,這些系統在 AI 生態系統演變時仍然保持穩健。
*需要電子郵件註冊和購買證明
您將學到的內容:
- 使用 Haystack 構建結構化檢索管道
- 應用上下文工程以改善代理性能
- 將管道作為 LangGraph 兼容的微服務提供
- 使用 LangGraph 協調多代理工作流程
- 使用 FastAPI 和 Hayhooks 部署 REST API
- 使用 Ragas 和 Weights & Biases 跟踪成本和質量
- 實施重試、斷路器和可觀察性
- 設計主權代理以進行高容量本地執行
本書適合對象:
LLM 工程師、NLP 開發人員和數據科學家,尋求構建生產級管道、代理工作流程或 RAG 系統。非常適合希望從原型轉向可擴展、可測試解決方案的技術負責人,以及將舊有 NLP 管道現代化為可協調微服務的團隊。建議具備 Python 熟練度和核心 NLP 概念的熟悉度。
目錄:
- 自然語言處理管道介紹
- 深入了解大型語言模型
- Haystack 介紹
- 將組件整合在一起 - Haystack 管道的不同用例
- 使用自定義組件開發 Haystack 管道
- 構建可重現和生產就緒的 RAG 系統
- 部署基於 Haystack 的應用
- 實作專案
- 未來趨勢及其後續
- 結語:代理 AI 的架構