scikit-learn Cookbook - Third Edition: Over 80 recipes for machine learning in Python with scikit-learn
暫譯: scikit-learn 食譜 - 第三版:超過 80 個使用 scikit-learn 進行 Python 機器學習的食譜

Sukup, John

  • 出版商: Packt Publishing
  • 出版日期: 2025-12-19
  • 售價: $1,840
  • 貴賓價: 9.5$1,748
  • 語言: 英文
  • 頁數: 388
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1836644450
  • ISBN-13: 9781836644453
  • 相關分類: Machine Learning
  • 立即出貨 (庫存=1)

相關主題

商品描述

Key benefits

  • Solve complex business problems with data-driven approaches
  • Master tools associated with developing predictive and prescriptive models
  • Build robust ML pipelines for real-world applications, avoiding common pitfalls
  • Free with your book: PDF Copy, AI Assistant, and Next-Gen Reader

Description

Trusted by data scientists, ML engineers, and software developers alike, scikit-learn offers a versatile, user-friendly framework for implementing a wide range of ML algorithms, enabling the efficient development and deployment of predictive models in real-world applications. This third edition of scikit-learn Cookbook will help you master ML with real-world examples and scikit-learn 1.5 features. This updated edition takes you on a journey from understanding the fundamentals of ML and data preprocessing, through implementing advanced algorithms and techniques, to deploying and optimizing ML models in production. Along the way, you’ll explore practical, step-by-step recipes that cover everything from feature engineering and model selection to hyperparameter tuning and model evaluation, all using scikit-learn. By the end of this book, you’ll have gained the knowledge and skills needed to confidently build, evaluate, and deploy sophisticated ML models using scikit-learn, ready to tackle a wide range of data-driven challenges. *Email sign-up and proof of purchase required

Who is this book for?

This book is for data scientists as well as machine learning and software development professionals looking to deepen their understanding of advanced ML techniques. To get the most out of this book, you should have proficiency in Python programming and familiarity with commonly used ML libraries; e.g., pandas, NumPy, matplotlib, and sciPy. An understanding of basic ML concepts, such as linear regression, decision trees, and model evaluation metrics will be helpful. Familiarity with mathematical concepts such as linear algebra, calculus, and probability will also be invaluable.

What you will learn

  • Implement a variety of ML algorithms, from basic classifiers to complex ensemble methods, using scikit-learn
  • Perform data preprocessing, feature engineering, and model selection to prepare datasets for optimal model performance
  • Optimize ML models through hyperparameter tuning and cross-validation techniques to improve accuracy and reliability
  • Deploy ML models for scalable, maintainable real-world applications
  • Evaluate and interpret models with advanced metrics and visualizations in scikit-learn
  • Explore comprehensive, hands-on recipes tailored to scikit-learn version 1.5

商品描述(中文翻譯)

## 主要好處

- 透過數據驅動的方法解決複雜的商業問題
- 精通與開發預測和處方模型相關的工具
- 建立穩健的機器學習(ML)管道以應用於現實世界,避免常見的陷阱
- 隨書附贈:PDF 版本、AI 助手和下一代閱讀器

## 內容描述

scikit-learn 受到數據科學家、機器學習工程師和軟體開發者的信賴,提供了一個多功能且易於使用的框架,用於實現各種機器學習算法,使得在現實世界應用中高效開發和部署預測模型。本書的第三版《scikit-learn 食譜》將幫助您通過現實世界的範例和 scikit-learn 1.5 的功能來掌握機器學習。這一更新版將帶您從理解機器學習和數據預處理的基本原理,經過實現先進的算法和技術,到在生產環境中部署和優化機器學習模型。在此過程中,您將探索實用的逐步食譜,涵蓋從特徵工程和模型選擇到超參數調整和模型評估的所有內容,全部使用 scikit-learn。到本書結束時,您將獲得自信構建、評估和部署複雜機器學習模型所需的知識和技能,準備應對各種數據驅動的挑戰。*需要電子郵件註冊和購買證明

## 本書適合誰?

本書適合數據科學家以及希望深入了解先進機器學習技術的機器學習和軟體開發專業人士。為了充分利用本書,您應具備 Python 程式設計的熟練度,並對常用的機器學習庫(例如 pandas、NumPy、matplotlib 和 sciPy)有一定的了解。對基本機器學習概念(如線性回歸、決策樹和模型評估指標)的理解將會有所幫助。對線性代數、微積分和概率等數學概念的熟悉也將非常有價值。

## 您將學到什麼

- 使用 scikit-learn 實現各種機器學習算法,從基本分類器到複雜的集成方法
- 執行數據預處理、特徵工程和模型選擇,以準備數據集以達到最佳模型性能
- 通過超參數調整和交叉驗證技術來優化機器學習模型,以提高準確性和可靠性
- 部署機器學習模型以實現可擴展、可維護的現實世界應用
- 使用 scikit-learn 評估和解釋模型,並運用先進的指標和可視化技術
- 探索針對 scikit-learn 版本 1.5 的全面實用食譜

類似商品