Fundamentals of Analytics Engineering: An introduction to building end-to-end analytics solutions
暫譯: 分析工程基礎:端到端分析解決方案的建構入門

Wilde, Dumky de, Kassapian, Fanny, Gligorevic, Jovan

  • 出版商: Packt Publishing
  • 出版日期: 2024-03-29
  • 售價: $1,580
  • 貴賓價: 9.5$1,501
  • 語言: 英文
  • 頁數: 332
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1837636451
  • ISBN-13: 9781837636457
  • 海外代購書籍(需單獨結帳)

商品描述

Gain a holistic understanding of the analytics engineering lifecycle by integrating principles from both data analysis and engineering

Key Features

  • Discover how analytics engineering aligns with your organization's data strategy
  • Access insights shared by a team of seven industry experts
  • Tackle common analytics engineering problems faced by modern businesses

Book Description

Navigate the world of data analytics with Fundamentals of Analytics Engineering-guiding you from foundational concepts to advanced techniques of data ingestion and warehousing, data lakehouse, and data modeling. Written by a team of 7 industry experts, this book helps you to transform raw data into structured insights.

In this book, you'll discover how to clean, filter, aggregate, and reformat data, and seamlessly serve it across diverse platforms. With practical guidance, you'll also learn how to build a simple data platform using Airbyte for ingestion, DuckDB for warehousing, dbt for transformations, and Tableau for visualization. From data quality and observability to fostering collaboration on codebases, you'll discover effective strategies for ensuring data integrity and driving collaborative success. As you advance, you'll become well-versed with the CI/CD principles for automated code building, testing, and deployment-laying the foundation for consistent and reliable pipelines. And with invaluable insights into gathering business requirements, documenting complex business logic, and the importance of data governance, you'll develop a holistic understanding of the analytics lifecycle.

By the end of this book, you'll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.

What you will learn

  • Design and implement data pipelines from ingestion to serving data
  • Explore best practices for data modeling and schema design
  • Gain insights into the use of cloud-based analytics platforms and tools for scalable data processing
  • Understand the principles of data governance and collaborative coding
  • Comprehend data quality management in analytics engineering
  • Gain practical skills in using analytics engineering tools to conquer real-world data challenges

Who this book is for

This book is for data engineers and data analysts considering pivoting their careers into analytics engineering. Analytics engineers who want to upskill and search for gaps in their knowledge will also find this book helpful, as will other data professionals who want to understand the value of analytics engineering in their organization's journey toward data maturity. To get the most out of this book, you should have a basic understanding of data analysis and engineering concepts such as data cleaning, visualization, ETL and data warehousing.

商品描述(中文翻譯)

獲得對分析工程生命週期的全面理解,通過整合數據分析和工程的原則

主要特點

- 探索分析工程如何與您組織的數據策略對齊
- 獲取七位行業專家的見解
- 解決現代企業面臨的常見分析工程問題

書籍描述

通過《分析工程基礎》導航數據分析的世界,從基礎概念到數據攝取和數據倉儲、高級技術、數據湖屋和數據建模。本書由七位行業專家撰寫,幫助您將原始數據轉化為結構化的見解。

在本書中,您將學習如何清理、過濾、聚合和重新格式化數據,並在不同平台之間無縫提供數據。通過實用的指導,您還將學習如何使用 Airbyte 進行數據攝取、使用 DuckDB 進行數據倉儲、使用 dbt 進行轉換,以及使用 Tableau 進行可視化來構建一個簡單的數據平台。從數據質量和可觀察性到促進代碼庫的協作,您將發現確保數據完整性和推動協作成功的有效策略。隨著您的進步,您將熟悉 CI/CD 原則,以實現自動化的代碼構建、測試和部署,為一致且可靠的管道奠定基礎。並且通過對收集業務需求、記錄複雜業務邏輯和數據治理重要性的寶貴見解,您將對分析生命週期有全面的理解。

在本書結束時,您將掌握從頭到尾開發可擴展分析解決方案的基本技術和最佳實踐。

您將學到的內容

- 設計和實施從數據攝取到數據提供的數據管道
- 探索數據建模和架構設計的最佳實踐
- 獲取有關基於雲的分析平台和工具在可擴展數據處理中的使用見解
- 理解數據治理和協作編碼的原則
- 理解分析工程中的數據質量管理
- 獲得使用分析工程工具解決現實世界數據挑戰的實用技能

本書適合誰

本書適合考慮將職業轉向分析工程的數據工程師和數據分析師。希望提升技能並尋找知識空白的分析工程師也會發現本書有幫助,其他希望了解分析工程在其組織數據成熟度旅程中價值的數據專業人士亦然。為了充分利用本書,您應該對數據分析和工程概念(如數據清理、可視化、ETL 和數據倉儲)有基本的理解。

目錄大綱

  1. What is Analytics Engineering?
  2. The Modern Data Stack
  3. Data Ingestion
  4. Data Warehouses
  5. Data Modeling
  6. Data Transformation
  7. Serving Data
  8. Hands-on: Building a Data Platform
  9. Data Quality & Observability
  10. Writing Code in a Team
  11. Writing Robust Pipelines
  12. Gathering Business Requirements
  13. Documenting Business Logic
  14. Data Governance

目錄大綱(中文翻譯)


  1. What is Analytics Engineering?

  2. The Modern Data Stack

  3. Data Ingestion

  4. Data Warehouses

  5. Data Modeling

  6. Data Transformation

  7. Serving Data

  8. Hands-on: Building a Data Platform

  9. Data Quality & Observability

  10. Writing Code in a Team

  11. Writing Robust Pipelines

  12. Gathering Business Requirements

  13. Documenting Business Logic

  14. Data Governance

最後瀏覽商品 (1)