Deep Learning with R for Beginners
暫譯: 初學者的 R 深度學習指南
Hodnett, Mark, Wiley, Joshua F., Liu, Yuxi (Hayden)
- 出版商: Packt Publishing
- 出版日期: 2019-05-17
- 售價: $1,650
- 貴賓價: 9.5 折 $1,568
- 語言: 英文
- 頁數: 612
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838642706
- ISBN-13: 9781838642709
-
相關分類:
DeepLearning、R 語言
立即出貨 (庫存=1)
買這商品的人也買了...
-
Introducing Character Animation with Blender$1,500$1,425 -
$875Analysis of Biological Networks (Hardcover) -
Biological Modeling and Simulation: A Survey of Practical Models, Algorithms, and Numerical Methods (Hardcover)$2,280$2,166 -
新世紀多媒體導論:理論與應用$600$570 -
現代多媒體實務與應用$650$585 -
初探機器學習|使用 Python (Thoughtful Machine Learning with Python)$480$379 -
A Primer on Scientific Programming with Python (Texts in Computational Science and Engineering)$2,740$2,603 -
$1,715Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Second Edition -
2019.2020 系統重灌、調校、故障排除與資料搶救自己來 (超值附贈314分鐘影音講解)$450$356 -
圖形演算法|Apache Spark 與 Neo4j 實務範例 (Graph Algorithms)$580$458 -
Excel 入門到完整學習 邁向最強職場應用—王者歸來 (全彩印刷)$680$537 -
深度學習的數學地圖 -- 用 Python 實作神經網路的數學模型 (附數學快查學習地圖)$580$458 -
決心打底!Python 深度學習基礎養成$690$587 -
AI 醫療 DEEP MEDICINE (Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again)$680$578 -
AI for Immunology$1,510$1,435 -
超 Easy!Blender 3D 繪圖設計速成包 - 含 3D列印技巧 - 最新版(第二版)$380$342 -
速查! 數學大百科事典 – 127 個公式、定理、 法則$500$395 -
Biology: A Global Approach, 12/e (Paperback)$2,100$2,058 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
Python 論文數據統計分析$540$486 -
Python 程式設計 ─ AI 與資料科學應用, 2/e$540$529 -
人手一本的資安健診實作課:不是專家也能自己動手做!(Win10 / Win11適用)$560$560 -
資料科學基礎數學 (Essential Math for Data Science)$680$537 -
未來數位科技活用大全:從 AI 協作、程式設計、資訊安全到大數據分析$580$452 -
Biology Made Easy$810$770
相關主題
商品描述
Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models.
This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R.
By the end of this Learning Path, you’ll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.
商品描述(中文翻譯)
深度學習在多個領域中找到了實際應用,而 R 是設計和部署深度學習模型的首選語言。
這條學習路徑將介紹深度學習的基本概念,甚至教你如何從零開始構建神經網絡模型。在你逐章學習的過程中,你將探索深度學習庫,並了解如何為各種挑戰創建深度學習模型,從異常檢測到推薦系統。接下來,這條學習路徑將幫助你涵蓋進階主題,例如生成對抗網絡(GANs)、遷移學習以及雲端的大規模深度學習,還有模型優化、過擬合和數據增強。通過實際項目,你還將熟悉如何在 R 中訓練卷積神經網絡(CNNs)、遞歸神經網絡(RNNs)和長短期記憶網絡(LSTMs)。
在這條學習路徑結束時,你將對深度學習有深入的了解,並具備在你的研究工作或項目中實施多個深度學習概念所需的技能。