Energy Optimization and Security in Federated Learning for Iot Environments
暫譯: 物聯網環境中聯邦學習的能源優化與安全性

Balusamy, Balamurugan, Arockiam, Daniel, Raj, Pethuru

  • 出版商: Institution of Engineering & Technology
  • 出版日期: 2025-02-04
  • 售價: $4,660
  • 貴賓價: 9.5$4,427
  • 語言: 英文
  • 頁數: 349
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1839539623
  • ISBN-13: 9781839539626
  • 相關分類: 物聯網 IoT資訊安全
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Smart environments such as smart homes and industrial automation have been transformed by the rapid developments in internet of things (IoT) devices and systems. However, the widespread use of these devices poses significant difficulties, particularly in settings with limited energy resources. Due to the significant energy consumption and communication overhead associated with delivering huge amounts of data, traditional machine learning algorithms which rely on centralized cloud servers for training are not always suitable.

Federated learning is a decentralized strategy that enables collaborative machine learning model training while keeping the data local on edge devices. It has emerged as a suitable solution to overcome the energy constraints of IoT devices. Federated learning works by dividing the training process among several nodes and using the processing power of edge devices. As opposed to sending raw data to a central server, only the model changes are communicated thereby considerably lowering the communication costs while protecting data privacy. This strategy reduces energy usage while simultaneously reducing network latency and bandwidth-related problems.

In this book, the authors show how to optimise federated learning algorithms and develop new communication protocols and resource allocation methodologies to maximize energy savings while retaining respectable model accuracy, to develop long-lasting and scalable IoT solutions that can function independently with no dependency on an external cloud infrastructure.

Energy Optimization and Security in Federated Learning for IoT Environments is intended to be a useful resource for academic researchers, R&D professionals, IoT engineers in the IT industry, and data scientists creating optimised AI models to be run in cloud environments.

商品描述(中文翻譯)

智慧環境,如智慧家庭和工業自動化,已因物聯網(IoT)設備和系統的快速發展而發生變革。然而,這些設備的廣泛使用在能源資源有限的環境中帶來了重大挑戰。由於傳輸大量數據所需的高能耗和通信開銷,依賴集中式雲伺服器進行訓練的傳統機器學習算法並不總是適用。

聯邦學習是一種去中心化的策略,能夠在保持數據本地於邊緣設備的同時進行協作機器學習模型的訓練。它已成為克服物聯網設備能源限制的合適解決方案。聯邦學習通過將訓練過程分配給多個節點,並利用邊緣設備的處理能力來運作。與將原始數據發送到中央伺服器不同,僅傳遞模型的變更,從而顯著降低通信成本,同時保護數據隱私。這一策略在降低能源使用的同時,也減少了網絡延遲和帶寬相關的問題。

在本書中,作者展示了如何優化聯邦學習算法,並開發新的通信協議和資源分配方法,以最大化能源節省,同時保持可接受的模型準確性,從而開發出能夠獨立運行且不依賴外部雲基礎設施的持久且可擴展的物聯網解決方案。

《物聯網環境中的聯邦學習能源優化與安全》旨在成為學術研究者、研發專業人士、IT行業的物聯網工程師以及創建優化AI模型以在雲環境中運行的數據科學家的有用資源。