Metaheuristics for Big Data
暫譯: 大數據的元啟發式演算法

Dhaenens, Clarisse, Jourdan, Laetitia

  • 出版商: Wiley
  • 出版日期: 2016-08-29
  • 售價: $5,550
  • 貴賓價: 9.5$5,273
  • 語言: 英文
  • 頁數: 224
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1848218060
  • ISBN-13: 9781848218062
  • 相關分類: Data-mining大數據 Big-data
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts.

The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.

商品描述(中文翻譯)

大數據是一個新興領域,存在許多技術挑戰需要理解,以便充分發揮其潛力。這些挑戰在處理大數據的各個階段中都會出現,從數據生成和獲取開始。存儲和管理階段面臨兩個關鍵挑戰:基礎設施,涉及存儲和傳輸,以及概念模型。最後,從大數據中提取意義需要複雜的分析。在這裡,作者提出使用元啟發式演算法作為解決這些挑戰的方案;它們首先能夠處理大規模問題,其次具有靈活性,因此能夠輕鬆適應不同類型的數據和不同的上下文。

本書的第一部分介紹並證明了使用元啟發式演算法來克服一些數據挖掘挑戰的必要性,並提供了一個特定的算法性能評估協議。接下來是對元啟發式演算法的介紹。本書的第二部分詳細說明了多個數據挖掘任務,包括聚類、關聯規則、監督分類和特徵選擇,然後解釋如何使用元啟發式演算法來處理這些任務。本書旨在自成一體,使讀者能夠理解書中討論的所有概念,並提供有關元啟發式演算法在大數據背景下應用於知識發現問題的最新概述。

作者簡介

Clarisse DHAENENS is Professor at the University of Lille in France and belongs to a research team working with both CRIStAL Laboratory (UMR CNRS) and Inria.

Laetitia JOURDAN is Professor at the University of Lille in France and belongs to a research team working with both CRIStAL Laboratory (UMR CNRS) and Inria.

作者簡介(中文翻譯)

Clarisse DHAENENS 是法國里爾大學的教授,並且隸屬於與 CRIStAL 實驗室 (UMR CNRS) 和 Inria 合作的研究團隊。

Laetitia JOURDAN 是法國里爾大學的教授,並且隸屬於與 CRIStAL 實驗室 (UMR CNRS) 和 Inria 合作的研究團隊。