Deep Learning for Beginners: Practical Guide with Python and Tensorflow (Data Sciences)
暫譯: 初學者的深度學習:使用 Python 和 TensorFlow 的實用指南 (數據科學)

François Duval

  • 出版商: W. W. Norton
  • 出版日期: 2017-12-24
  • 售價: $880
  • 貴賓價: 9.5$836
  • 語言: 英文
  • 頁數: 114
  • 裝訂: Paperback
  • ISBN: 1982027177
  • ISBN-13: 9781982027179
  • 相關分類: DeepLearning
  • 無法訂購

買這商品的人也買了...

商品描述

***** Buy now (Will soon return to $35.99)*****

***** #1 Kindle Store Bestseller in Mathematical Analysis (Throughout 2017) *****

Free Kindle eBook for customers who purchase the print book


Are you thinking of learning more about Deep Learning?

If you are looking for a book to help you understand how the deep learning works by using Python and Tensorflow, then this is a good book for you. 

 Several Visual Illustrations and Examples

Equations are great for really understanding every last detail of an algorithm.  But to get a basic idea of how things work, this book contains several graphs which detail each neural networks/deep learning algorithms. It is contains also several graphs for the practical examples.

 This Is a Practical Guide Book

This book will help you explore exactly what deep learning is and will also teach you about why it is so revolutionary and fascinating. The chapters will introduce the reader to the concepts, techniques, and applications of deep learning algorithms with the practical case studies and walk-through examples on which to practice.

This book takes a different approach that is based on providing simple examples of how deep learning algorithms work, and building on those examples step by step to encompass the more complicated parts of the algorithms. 

Python and TensorFlow Codes for the Examples Shown In the Book

You will build your Deep Learning Model by using Python and Tensorflow

There are many ways to build a deep learning model. However, it can also be overwhelming when you start, because there are so many tools to choose. In this book, we choose only these two tools: Tensorflow and Python.

Target Users

The book designed for a variety of target audiences. The most suitable users would include: 
  • Newbies in computer science techniques and deep learning
  • Professionals in data science and social sciences
  • Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way 
  • Students and academicians, especially those focusing on neural networks and deep learning

What’s inside this book?

  • Overview in Deep Learning
  • Quick Example to start
  • Popular Open Source Library
  • Pre-requisite for Deep Learning
  • Deep Learning Presentation
  • Deep Neural Networks Applications with Tensorflow and Python
  • Autoencoders Algorithms
  • Deep Learning for Computer Games
  • Anomaly Detection
  • Glossary of Some Useful Terms in Deep Learning
  • Useful References

Frequently Asked Questions

Q: Is this book for me and do I need programming experience? A: If you want to smash deep learning with Python, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you will be OK. If not, online programming courses cover more than what it is required. You can do one in a week, for free.

Q: Can I loan this book to friends? A: Yes. Under Amazon’s Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days.

Q: Does this book include everything I need to become a deep learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in deep learning and further learning will be required beyond this book to master all aspects of deep learning.

Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. will also be happy to help you if you send us an email at customer_service@datasciences-book.com.

商品描述(中文翻譯)

***** 現在購買(將很快恢復至 $35.99)*****
***** 2017 年數學分析類別 #1 Kindle 商店暢銷書 *****

免費 Kindle 電子書供購買印刷書籍的客戶使用

您是否考慮學習更多有關深度學習的知識?
如果您正在尋找一本幫助您理解深度學習如何運作的書籍,並使用 Python 和 TensorFlow,那麼這本書非常適合您。

幾個視覺插圖和範例
方程式非常適合深入理解算法的每一個細節。但為了獲得對事物運作的基本概念,本書包含幾個圖表,詳細說明每個神經網絡/深度學習算法。它還包含幾個實用範例的圖表。

這是一本實用指南
這本書將幫助您探索深度學習的本質,並教您為什麼它如此革命性和迷人。各章將向讀者介紹深度學習算法的概念、技術和應用,並提供實際案例研究和逐步範例供您練習。
本書採取不同的方法,基於提供簡單的深度學習算法運作範例,並逐步建立這些範例,以涵蓋算法的更複雜部分。

本書中顯示的 Python 和 TensorFlow 代碼範例
您將使用 Python 和 TensorFlow 構建您的深度學習模型
有許多方法可以構建深度學習模型。然而,當您開始時,可能會感到不知所措,因為有太多工具可供選擇。在本書中,我們僅選擇這兩個工具:TensorFlow 和 Python。

目標讀者
本書設計針對多種目標讀者。最合適的使用者包括:
- 計算機科學技術和深度學習的新手
- 數據科學和社會科學的專業人士
- 尋求以最簡單易懂的方式向學生解釋內容的教授、講師或導師
- 學生和學者,特別是專注於神經網絡和深度學習的人

這本書裡面有什麼?
- 深度學習概述
- 快速範例以開始
- 受歡迎的開源庫
- 深度學習的前置知識
- 深度學習簡報
- 使用 TensorFlow 和 Python 的深度神經網絡應用
- 自編碼器算法
- 用於電腦遊戲的深度學習
- 異常檢測
- 深度學習中一些有用術語的詞彙表
- 有用的參考資料

常見問題
Q: 這本書適合我嗎?我需要程式設計經驗嗎?
A: 如果您想用 Python 深入了解深度學習,這本書適合您。只需少量程式設計經驗。如果您已經寫過幾行代碼並認識基本的程式語句,您就可以了。如果沒有,線上程式設計課程涵蓋了所需的內容。您可以在一週內免費完成一門課程。

Q: 我可以把這本書借給朋友嗎?
A: 可以。在亞馬遜的 Kindle 書籍借閱計劃下,您可以將這本書借給朋友和家人,借閱期限為 14 天。

Q: 這本書是否包含我成為深度學習專家的所有所需內容?
A: 不幸的是,沒有。這本書是為首次接觸深度學習的讀者設計的,想要掌握深度學習的所有方面,還需要進一步的學習。

Q: 如果這本書不適合我,我可以退款嗎?
A: 可以,如果您不滿意,亞馬遜會為您退款,更多有關亞馬遜退款服務的信息,請訪問亞馬遜幫助平台。如果您發送電子郵件至 customer_service@datasciences-book.com,我們也很樂意幫助您。