Intelligent Analysis: Fractional Inequalities and Approximations Expanded
暫譯: 智能分析:分數不等式與擴展近似
Anastassiou, George a.
- 出版商: Springer
- 出版日期: 2021-01-15
- 售價: $5,990
- 貴賓價: 9.5 折 $5,691
- 語言: 英文
- 頁數: 525
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030386384
- ISBN-13: 9783030386382
-
相關分類:
微積分 Calculus、工程數學 Engineering-mathematics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann-Liouville type and related results including inequalities. We examine the case of low order Riemann-Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar's well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.
商品描述(中文翻譯)
本書專注於計算分析和分數分析,這兩個領域本身都非常重要,並且在各種現實世界的應用中被廣泛使用。我們首先介紹重要的Iyengar型不等式,接著討論Choquet積分分析不等式,這些不等式在經濟學中的主要應用中扮演著重要角色。接下來,我們探討Riemann-Liouville型的局部分數導數及相關結果,包括不等式。我們檢視低階Riemann-Liouville分數導數的情況,以及沒有初始條件的不等式,並討論相關的近似。接下來的部分,我們討論由算子引起的定量複雜近似理論和各種重要的複數分數不等式。我們還涵蓋了Csiszar著名的f-散度的可適應分數近似,並呈現可適應的分數自伴隨算子不等式。我們繼續研究新的局部分數M-導數,這些導數具備普通導數的所有基本性質。最後,我們討論具有積分餘項的新複數多變量泰勒公式。本書分享的結果可應用於純數學和應用數學的各個領域,為研究人員和研究生提供了寶貴的資源,並可用於相關領域的研討會。