Artificial Intelligence and Machine Learning for Digital Pathology: State-Of-The-Art and Future Challenges
暫譯: 數位病理學中的人工智慧與機器學習:現狀與未來挑戰
Holzinger, Andreas, Goebel, Randy, Mengel, Michael
- 出版商: Springer
- 出版日期: 2020-06-21
- 售價: $3,420
- 貴賓價: 9.5 折 $3,249
- 語言: 英文
- 頁數: 341
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030504018
- ISBN-13: 9783030504014
-
相關分類:
Machine Learning、DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support.
Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample, - and image-level. Here biobanks play a central and future role in providing large collections of high-quality well, annotated samples and data. The main challenges are finding biobanks containing ''fit-for-purpose'' samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.
商品描述(中文翻譯)
數據驅動的人工智慧 (AI) 和機器學習 (ML) 在數位病理學、放射學和皮膚科方面非常有前景。在特定情況下,例如深度學習 (DL),甚至超越人類的表現。然而,在醫學的背景下,讓人類專家驗證結果是非常重要的。因此,需要對最先進的解決方案進行透明化和可追溯性,以使其能夠用於倫理負責的醫療決策支持。
此外,訓練所需的大數據必須涵蓋不同器官系統中各種人類疾病的廣泛範疇。這些數據集必須符合高品質和監管標準,並且必須在患者、樣本和影像層面上進行良好的註釋。在這裡,生物銀行在提供大量高品質、良好註釋的樣本和數據方面扮演著中心和未來的角色。主要挑戰包括尋找包含「適用於目的」樣本的生物銀行、提供與質量相關的元數據、獲取標準化的醫療數據和註釋,以及對整張切片進行大規模掃描,包括高效的數據管理解決方案。