Probabilistic Graphical Models: Principles and Applications

Sucar, Luis Enrique

  • 出版商: Springer
  • 出版日期: 2021-02-04
  • 售價: $2,780
  • 貴賓價: 9.5$2,641
  • 語言: 英文
  • 頁數: 355
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030619427
  • ISBN-13: 9783030619428

下單後立即進貨 (約1週~2週)

商品描述

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.

The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.

Topics and features: presents a unified framework encompassing all of the main classes of PGMs; explores the fundamental aspects of representation, inference and learning for each technique; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter; suggests possible course outlines for instructors in the preface.

This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.

作者簡介

Dr. Luis Enrique Sucar is a Senior Research Scientist in the Department of Computing at the National Institute of Astrophysics, Optics and Electronics (INAOE), Mexico.