Federated Learning Systems: Towards Next-Generation AI
            
暫譯: 聯邦學習系統:邁向下一代人工智慧
        
        Rehman, Muhammad Habib Ur, Gaber, Mohamed Medhat
- 出版商: Springer
- 出版日期: 2021-06-12
- 售價: $7,030
- 貴賓價: 9.5 折 $6,679
- 語言: 英文
- 頁數: 196
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030706036
- ISBN-13: 9783030706036
- 
    相關分類:
    
      Machine Learning
 
海外代購書籍(需單獨結帳)
買這商品的人也買了...
- 
                
                   Federated Learning with Python: Design and implement a federated learning system and develop applications using existing frameworks Federated Learning with Python: Design and implement a federated learning system and develop applications using existing frameworks$1,700$1,615
- 
                
                   Federated Learning for Wireless Networks Federated Learning for Wireless Networks$7,030$6,679
- 
                
                   Federated Learning for Internet of Medical Things: Concepts, Paradigms, and Solutions Federated Learning for Internet of Medical Things: Concepts, Paradigms, and Solutions$5,530$5,254
- 
                
                   Federated Learning: A Comprehensive Overview of Methods and Applications Federated Learning: A Comprehensive Overview of Methods and Applications$7,030$6,679
- 
                
                   Federated Learning for Future Intelligent Wireless Networks Federated Learning for Future Intelligent Wireless Networks$5,120$4,864
- 
                
                   Handbook on Federated Learning: Advances, Applications and Opportunities Handbook on Federated Learning: Advances, Applications and Opportunities$7,030$6,679
- 
                
                   Federated AI for Real-World Business Scenarios Federated AI for Real-World Business Scenarios$2,800$2,660
- 
                
                   Security and Privacy in Federated Learning Security and Privacy in Federated Learning$7,180$6,821
- 
                
                   Communication Efficient Federated Learning for Wireless Networks Communication Efficient Federated Learning for Wireless Networks$6,650$6,318
- 
                
                   Adversarial Multimedia Forensics Adversarial Multimedia Forensics$7,770$7,382
- 
                
                   The Potential of Generative AI: Transforming Technology, Business and Art Through Innovative AI Applications The Potential of Generative AI: Transforming Technology, Business and Art Through Innovative AI Applications$1,670$1,587
- 
                
                   Federated Learning: Theory and Practice Federated Learning: Theory and Practice$4,290$4,076
- 
                
                   Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats$1,800$1,710
- 
                
                   Artificial Intelligence for Smart Manufacturing: Methods, Applications, and Challenges Artificial Intelligence for Smart Manufacturing: Methods, Applications, and Challenges$6,800$6,460
- 
                
                   Unleashing the Power of Data with Trusted AI: A guide for board members and executives Unleashing the Power of Data with Trusted AI: A guide for board members and executives$4,020$3,819
- 
                
                   Security and Risk Analysis for Intelligent Edge Computing Security and Risk Analysis for Intelligent Edge Computing$7,940$7,543
- 
                
                   Industrial Edge Computing: Architecture, Optimization and Applications Industrial Edge Computing: Architecture, Optimization and Applications$7,770$7,382
- 
                
                   Mobile and Ubiquitous Systems: Computing, Networking and Services: 20th Eai International Conference, Mobiquitous 2023, Melbourne, Vic, Australia, Nov Mobile and Ubiquitous Systems: Computing, Networking and Services: 20th Eai International Conference, Mobiquitous 2023, Melbourne, Vic, Australia, Nov$4,040$3,838
- 
                
                   LLM Model Security: Strategies, Best Practices, and Future Trends LLM Model Security: Strategies, Best Practices, and Future Trends$1,050$998
- 
                
                   LLM and Generative AI for Healthcare: A Comprehensive Guide LLM and Generative AI for Healthcare: A Comprehensive Guide$1,050$998
- 
                
                   Generative AI Strategy and Implementation: Mastering Techniques and Advanced Applications Generative AI Strategy and Implementation: Mastering Techniques and Advanced Applications$850$808
- 
                
                   Generative AI Transformation: A Guide for Everyone Generative AI Transformation: A Guide for Everyone$970$922
- 
                
                   Generative AI for Manufacturing Generative AI for Manufacturing$2,220$2,109
- 
                
                   Generative AI for Robotics and Autonomous Systems Generative AI for Robotics and Autonomous Systems$2,300$2,185
- 
                
                   Learn Python Generative AI: Journey from autoencoders to transformers to large language models (English Edition) Learn Python Generative AI: Journey from autoencoders to transformers to large language models (English Edition)$1,700$1,615
商品描述
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors' control of their critical data.
商品描述(中文翻譯)
本書從多個角度探討研究領域,包括文獻計量分析、評論、實證分析、平台及未來應用。集中訓練深度學習和機器學習模型不僅會產生高昂的數據傳輸成本,還會引發數據提供者的隱私保護問題。本書旨在針對研究人員和實務工作者深入探討聯邦學習研究中的核心議題,以轉變下一代人工智慧應用。聯邦學習使得學習模型能夠分佈在各個設備和系統上,這些設備和系統進行初步訓練,並將更新的模型屬性報告給集中式雲伺服器,以進行安全且保護隱私的屬性聚合和全球模型開發。聯邦學習在隱私、通信效率、數據安全以及貢獻者對其關鍵數據的控制方面具有優勢。
 
 
     
     
     
     
     
     
     
    
