Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment: With Examples in R and Python
暫譯: 計算心理測量學:新一代數位學習與評估的新方法論:以 R 和 Python 為例

Von Davier, Alina A., Mislevy, Robert J., Hao, Jiangang

  • 出版商: Springer
  • 出版日期: 2021-12-14
  • 售價: $5,930
  • 貴賓價: 9.5$5,634
  • 語言: 英文
  • 頁數: 262
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030743934
  • ISBN-13: 9783030743932
  • 相關分類: Python程式語言R 語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book defines and describes a new discipline, named "computational psychometrics," from the perspective of new methodologies for handling complex data from digital learning and assessment. The editors and the contributing authors discuss how new technology drastically increases the possibilities for the design and administration of learning and assessment systems, and how doing so significantly increases the variety, velocity, and volume of the resulting data. Then they introduce methods and strategies to address the new challenges, ranging from evidence identification and data modeling to the assessment and prediction of learners' performance in complex settings, as in collaborative tasks, game/simulation-based tasks, and multimodal learning and assessment tasks.

Computational psychometrics has thus been defined as a blend of theory-based psychometrics and data-driven approaches from machine learning, artificial intelligence, and data science. All these together provide a better methodological framework for analysing complex data from digital learning and assessments. The term "computational" has been widely adopted by many other areas, as with computational statistics, computational linguistics, and computational economics. In those contexts, "computational" has a meaning similar to the one proposed in this book: a data-driven and algorithm-focused perspective on foundations and theoretical approaches established previously, now extended and, when necessary, reconceived. This interdisciplinarity is already a proven success in many disciplines, from personalized medicine that uses computational statistics to personalized learning that uses, well, computational psychometrics. We expect that this volume will be of interest not just within but beyond the psychometric community.

In this volume, experts in psychometrics, machine learning, artificial intelligence, data science and natural language processing illustrate their work, showing how the interdisciplinary expertise of each researcher blends into a coherent methodological framework to deal with complex data from complex virtual interfaces. In the chapters focusing on methodologies, the authors use real data examples to demonstrate how to implement the new methods in practice. The corresponding programming codes in R and Python have been included as snippets in the book and are also available in fuller form in the GitHub code repository that accompanies the book.

商品描述(中文翻譯)

這本書從處理數位學習和評估的複雜數據的新方法論的角度,定義並描述了一個新的學科,稱為「計算心理測量學」(computational psychometrics)。編輯和貢獻作者討論了新技術如何大幅增加學習和評估系統設計與管理的可能性,以及這樣做如何顯著提高所產生數據的多樣性、速度和體量。接著,他們介紹了應對新挑戰的方法和策略,這些挑戰範圍從證據識別和數據建模到在複雜環境中評估和預測學習者的表現,例如在協作任務、基於遊戲/模擬的任務以及多模態學習和評估任務中。

因此,計算心理測量學被定義為理論基礎的心理測量學與來自機器學習、人工智慧和數據科學的數據驅動方法的結合。這些方法共同提供了一個更好的方法論框架,用於分析來自數位學習和評估的複雜數據。「計算」(computational)這個術語已被許多其他領域廣泛採用,例如計算統計學、計算語言學和計算經濟學。在這些背景下,「計算」的意義與本書所提出的相似:一種數據驅動和以算法為重點的視角,對先前建立的基礎和理論方法進行擴展,並在必要時重新構思。這種跨學科的整合在許多學科中已經證明是成功的,從使用計算統計學的個性化醫療到使用計算心理測量學的個性化學習。我們預期這本書將引起心理測量學社群內外的興趣。

在這本書中,心理測量學、機器學習、人工智慧、數據科學和自然語言處理的專家展示了他們的工作,顯示每位研究者的跨學科專業如何融合成一個一致的方法論框架,以處理來自複雜虛擬介面的複雜數據。在專注於方法論的章節中,作者使用真實數據示例來演示如何在實踐中實施新方法。相應的 R 和 Python 程式碼片段已包含在書中,並且在隨書附帶的 GitHub 代碼庫中也可以以更完整的形式獲得。