Systems Engineering and Artificial Intelligence

Lawless, William F., Mittu, Ranjeev, Sofge, Donald A.

  • 出版商: Springer
  • 出版日期: 2022-11-03
  • 售價: $6,880
  • 貴賓價: 9.5$6,536
  • 語言: 英文
  • 頁數: 569
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030772853
  • ISBN-13: 9783030772857
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

商品描述

This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams--where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML. The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy.

The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.


商品描述(中文翻譯)

本書提供了系統工程設計哲學在建構由人工智慧(AI)、機器學習(ML)和處於混亂環境中的人類組成的複雜系統中的益處的廣泛概述。主要主題包括使用AI/ML驗證和驗證系統的出現,以及人機系統整合以開發強大而有效的人機團隊 - 其中機器可能因其嵌入式AI/ML的複雜性而具有不同程度的自主性。這些章節不僅描述了所學到的知識,還提出了必須回答的問題,以進一步推進自主科學的發展。

人類和機器作為一個團隊運作的科學需要從社會科學、國家和國際法學、倫理和政策、以及社會學和心理學等學科中獲得洞察力。社會科學告訴我們如何構建上下文,當人類和機器相互依賴時信任如何受到影響,以及人機團隊需要共享的解釋語言。國家和國際法學確定了非微不足道的人機失敗的法律責任,倫理標準塑造了全球政策,而社會學則提供了理解跨文化團隊規範的基礎。心理學的洞察力可能有助於我們理解,如果基於AI/ML的機器開始超越其人類隊友並因此降低其價值或重要性,對人類產生的負面影響。本書邀請專業人士和好奇者一同見證自主科學嶄露頭角的新前沿。