The Beginner's Guide to Data Science
暫譯: 數據科學入門指南

Ball, Robert, Rague, Brian

  • 出版商: Springer
  • 出版日期: 2023-11-16
  • 售價: $2,460
  • 貴賓價: 9.5$2,337
  • 語言: 英文
  • 頁數: 248
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031078675
  • ISBN-13: 9783031078675
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

This book discusses the principles and practical applications of data science, addressing key topics including data wrangling, statistics, machine learning, data visualization, natural language processing and time series analysis. Detailed investigations of techniques used in the implementation of recommendation engines and the proper selection of metrics for distance-based analysis are also covered.

Utilizing numerous comprehensive code examples, figures, and tables to help clarify and illuminate essential data science topics, the authors provide an extensive treatment and analysis of real-world questions, focusing especially on the task of determining and assessing answers to these questions as expeditiously and precisely as possible. This book addresses the challenges related to uncovering the actionable insights in "big data," leveraging database and data collection tools such as web scraping and text identification.

This book is organized as 11 chapters, structured as independent treatments of the following crucial data science topics:

  • Data gathering and acquisition techniques including data creation
  • Managing, transforming, and organizing data to ultimately package the information into an accessible format ready for analysis
  • Fundamentals of descriptive statistics intended to summarize and aggregate data into a few concise but meaningful measurements
  • Inferential statistics that allow us to infer (or generalize) trends about the larger population based only on the sample portion collected and recorded
  • Metrics that measure some quantity such as distance, similarity, or error and which are especially useful when comparing one or more data observations
  • Recommendation engines representing a set of algorithms designed to predict (or recommend) a particular product, service, or other item of interest a user or customer wishes to buy or utilize in some manner
  • Machine learning implementations and associated algorithms, comprising core data science technologies with many practical applications, especially predictive analytics
  • Natural Language Processing, which expedites the parsing and comprehension of written and spoken language in an effective and accurate manner
  • Time series analysis, techniques to examine and generate forecasts about the progress and evolution of data over time

Data science provides the methodology and tools to accurately interpret an increasing volume of incoming information in order to discern patterns, evaluate trends, and make the right decisions. The results of data science analysis provide real world answers to real world questions. Professionals working on data science and business intelligence projects as well as advanced-level students and researchers focused on data science, computer science, business and mathematics programs will benefit from this book.

商品描述(中文翻譯)

這本書探討了資料科學的原則和實際應用,涵蓋了關鍵主題,包括資料整理、統計學、機器學習、資料視覺化、自然語言處理和時間序列分析。書中還詳細調查了推薦引擎實作中使用的技術以及距離基礎分析中適當選擇指標的方法。

作者利用大量的綜合程式碼範例、圖表和表格來幫助澄清和闡明重要的資料科學主題,提供了對現實世界問題的廣泛處理和分析,特別專注於快速且精確地確定和評估這些問題的答案。這本書解決了與揭示「大數據」中可行見解相關的挑戰,利用資料庫和資料收集工具,如網頁擷取和文本識別。

本書共分為11章,結構上獨立處理以下關鍵的資料科學主題:

- 資料收集和獲取技術,包括資料創建
- 管理、轉換和組織資料,最終將資訊打包成可供分析的可存取格式
- 描述性統計的基本原則,旨在將資料總結和聚合為幾個簡潔但有意義的測量
- 推論統計,讓我們能夠僅根據收集和記錄的樣本部分推斷(或概括)有關更大群體的趨勢
- 測量某些量(如距離、相似性或誤差)的指標,特別在比較一個或多個資料觀察時非常有用
- 推薦引擎,代表一組設計用來預測(或推薦)用戶或客戶希望購買或以某種方式使用的特定產品、服務或其他項目的演算法
- 機器學習實作及相關演算法,包含許多實際應用的核心資料科學技術,特別是預測分析
- 自然語言處理,能有效且準確地加速書面和口語語言的解析和理解
- 時間序列分析,檢查和生成有關資料隨時間進展和演變的預測的技術

資料科學提供了準確解釋不斷增加的進來資訊的方法論和工具,以辨識模式、評估趨勢並做出正確的決策。資料科學分析的結果為現實世界問題提供了現實世界的答案。從事資料科學和商業智慧專案的專業人士,以及專注於資料科學、計算機科學、商業和數學課程的高級學生和研究人員都將從這本書中受益。

作者簡介

Robert Ball has devoted a significant amount of his adult years thinking about data. From visualizing data on 100-monitor displays, exploring migration patterns, to understanding the provenance and evolution of data through time, he has explored data expressed in many usages and forms. Dr. Ball both teaches and works with the private sector, public sector, and government in various projects and capacities. However, no matter the origin of the data, the ultimate question almost universally that needs to be answered is what insight can be discovered in the data?

Brian Rague joined the School of Computing faculty at Weber State University in 2003 after working on various data science and engineering research projects throughout his early career at MIT, Caltech, and NASA's Jet Propulsion Laboratory. He has consulted with industry partners on how to effectively leverage the ongoing deluge of available data for both operations and research purposes. His areas of interest emphasize the platforms and technologies that wrangle and process data, such as machine learning, parallel computing, and distributed systems.

作者簡介(中文翻譯)

羅伯特·巴爾在成年後的許多年裡,專注於數據的思考。從在100個顯示器上可視化數據、探索遷移模式,到理解數據隨時間的來源和演變,他探索了以多種用途和形式表達的數據。巴爾博士同時在教學和與私營部門、公共部門及政府的各種項目和角色中工作。然而,無論數據的來源如何,幾乎普遍需要回答的最終問題是:在數據中可以發現什麼洞察?

布萊恩·拉格於2003年加入韋伯州立大學計算機學院的教職,之前在麻省理工學院、加州理工學院和NASA噴氣推進實驗室的早期職業生涯中參與了各種數據科學和工程研究項目。他曾與行業夥伴合作,探討如何有效利用不斷湧現的可用數據,以用於操作和研究目的。他的興趣領域強調處理和處理數據的平台和技術,例如機器學習、並行計算和分散式系統。

最後瀏覽商品 (1)