Question Answering Over Text and Knowledge Base
暫譯: 文本與知識庫的問答系統
Momtazi, Saeedeh, Abbasiantaeb, Zahra
- 出版商: Springer
- 出版日期: 2023-11-05
- 售價: $7,030
- 貴賓價: 9.5 折 $6,679
- 語言: 英文
- 頁數: 202
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031165543
- ISBN-13: 9783031165542
-
相關分類:
人工智慧、大數據 Big-data、Data Science
海外代購書籍(需單獨結帳)
商品描述
This book provides a coherent and complete overview of various Question Answering (QA) systems. It covers three main categories based on the source of the data that can be unstructured text (TextQA), structured knowledge graphs (KBQA), and the combination of both. Developing a QA system usually requires using a combination of various important techniques, including natural language processing, information retrieval and extraction, knowledge graph processing, and machine learning.
After a general introduction and an overview of the book in Chapter 1, the history of QA systems and the architecture of different QA approaches are explained in Chapter 2. It starts with early close domain QA systems and reviews different generations of QA up to state-of-the-art hybrid models. Next, Chapter 3 is devoted to explaining the datasets and the metrics used for evaluating TextQA and KBQA. Chapter 4 introduces the neural and deep learning models used in QA systems. This chapter includes the required knowledge of deep learning and neural text representation models for comprehending the QA models over text and QA models over knowledge base explained in Chapters 5 and 6, respectively. In some of the KBQA models the textual data is also used as another source besides the knowledge base; these hybrid models are studied in Chapter 7. In Chapter 8, a detailed explanation of some well-known real applications of the QA systems is provided. Eventually, open issues and future work on QA are discussed in Chapter 9.
This book delivers a comprehensive overview on QA over text, QA over knowledge base, and hybrid QA systems which can be used by researchers starting in this field. It will help its readers to follow the state-of-the-art research in the area by providing essential and basic knowledge.
商品描述(中文翻譯)
這本書提供了各種問答系統(Question Answering, QA)的連貫且完整的概述。它根據數據來源分為三個主要類別:非結構化文本(TextQA)、結構化知識圖譜(KBQA)以及兩者的結合。開發一個QA系統通常需要使用多種重要技術的組合,包括自然語言處理、信息檢索與提取、知識圖譜處理以及機器學習。
在第一章中,書籍提供了一個一般性的介紹和概述,第二章則解釋了QA系統的歷史以及不同QA方法的架構。這一章從早期的封閉領域QA系統開始,回顧了不同世代的QA系統,直到最先進的混合模型。接下來,第三章專門解釋了用於評估TextQA和KBQA的數據集和指標。第四章介紹了在QA系統中使用的神經網絡和深度學習模型。本章包括理解第五章和第六章中分別解釋的文本QA模型和知識庫QA模型所需的深度學習和神經文本表示模型的知識。在某些KBQA模型中,文本數據也被用作除了知識庫之外的另一個來源;這些混合模型在第七章中進行研究。在第八章中,提供了一些知名的QA系統實際應用的詳細解釋。最後,第九章討論了QA領域的開放問題和未來的工作。
這本書對於文本上的QA、知識庫上的QA以及混合QA系統提供了全面的概述,適合剛進入這個領域的研究人員。它將幫助讀者跟隨該領域的最先進研究,提供必要的基本知識。
作者簡介
Saeedeh Momtazi is an associate professor at Amirkabir University of Technology, Iran. She received a Ph.D. degree in Artificial Intelligence from Saarland University, Germany. After finishing her Ph.D., she worked at the Hasso-Plattner Institute at Potsdam University, Germany and the German Institute for International Educational Research, Germany, as a postdoctoral researcher. Her main research interests are natural language processing and information retrieval. She has taught several courses and tutorials about QA systems and related topics.
Zahra Abbasiantaeb obtained her M.Sc. in Artificial Intelligence at the Amirkabir University of Technology, Iran. She also received her B.Sc. degree in Software Engineering from the Amirkabir University of Technology, Iran. Natural language processing and information retrieval with a focus on QA systems are her main research interests. She followed this topic through publishing surveys and technical papers.
作者簡介(中文翻譯)
Saeedeh Momtazi 是伊朗阿米爾卡比爾科技大學的副教授。她在德國薩爾蘭大學獲得人工智慧博士學位。完成博士學位後,她在德國波茨坦大學的哈索-普拉特納研究所及德國國際教育研究所擔任博士後研究員。她的主要研究興趣是自然語言處理和資訊檢索。她教授過多門關於問答系統及相關主題的課程和研討會。
Zahra Abbasiantaeb 在伊朗阿米爾卡比爾科技大學獲得人工智慧碩士學位。她也在同一所大學獲得軟體工程學士學位。她的主要研究興趣是自然語言處理和資訊檢索,特別是針對問答系統的研究。她透過發表調查報告和技術論文來深入探討這一主題。