Data Science and Predictive Analytics: Biomedical and Health Applications Using R
暫譯: 數據科學與預測分析:使用 R 的生物醫學與健康應用

Dinov, Ivo D.

  • 出版商: Springer
  • 出版日期: 2024-02-17
  • 售價: $3,320
  • 貴賓價: 9.5$3,154
  • 語言: 英文
  • 頁數: 918
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031174852
  • ISBN-13: 9783031174858
  • 相關分類: Data ScienceMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.

Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book's fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices.

This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.



商品描述(中文翻譯)

這本教科書整合了重要的數學基礎、高效的計算演算法、應用統計推斷技術以及尖端的機器學習方法,以應對廣泛的關鍵生物醫學資訊學、健康分析應用和決策科學挑戰。書中的每個概念都包括嚴謹的符號公式,並結合計算演算法和作為功能性 R 電子 Markdown 筆記本實現的完整端到端流程協議。這些工作流程支持主動學習,並展示全面的數據操作、互動式視覺化和複雜的分析。內容包括開放性問題、最先進的科學知識、異質科學工具的倫理整合,以及系統驗證和可重複研究結果傳播的程序。

除了處理、詢問和理解大量複雜結構化和非結構化數據所帶來的巨大挑戰外,還有獨特的機會來自於獲取豐富的特徵、高維度和隨時間變化的信息。《數據科學與預測分析》涵蓋的主題針對特定的知識空白,解決教育障礙,並減輕勞動力的信息準備和數據科學不足。具體而言,它提供了一個跨學科的課程,整合了核心數學原則、現代計算方法、高級數據科學技術、基於模型的機器學習、無模型的人工智慧以及創新的生物醫學應用。這本書的十四章從介紹開始,逐步建立從視覺化到線性建模、降維、監督分類、黑箱機器學習技術、定性學習方法、無監督聚類、模型性能評估、特徵選擇策略、縱向數據分析、優化、神經網絡和深度學習的基礎技能。第二版的書籍包括利用生成對抗網絡、遷移學習和合成數據生成的額外學習策略,以及八個補充的電子附錄。

這本教科書適合正式的教學指導課程教育,也適合個人或團隊支持的自學。材料針對高年級和研究生級別的課程,涵蓋應用和跨學科數學、當代基於學習的數據科學技術、計算演算法開發、優化理論、統計計算和生物醫學科學。書中描述的分析技術和預測科學方法對於廣泛的讀者,包括正式和非正式學習者、大學講師、研究人員和工程師,在學術界、工業、政府、監管、資助和政策機構中都可能有用。支持的書籍網站提供了許多範例、數據集、功能腳本、完整的電子筆記本、廣泛的附錄和其他材料。

作者簡介

Professor Ivo D. Dinov directs the Statistics Online Computational Resource (SOCR) at the University of Michigan and serves as associate director of the Michigan Institute for Data Science (MIDAS). He is an expert in mathematical modeling, statistical analysis, high-throughput computational processing, and scientific visualization of large, complex and heterogeneous datasets (Big Data). Dr. Dinov is developing, validating, and disseminating novel technology-enhanced pedagogical approaches for STEM education and active data science learning. His artificial intelligence and machine learning work involves compressive big data analytics, statistical obfuscation of sensitive data, complex time (kime) representation, model-based and model-free techniques for kimesurface analytics. Dr. Dinov is a member of the American Statistical Association, the American Mathematical Society, the American Physical Society, the American Association for the Advancement of Science, an honorary member ofthe Sigma Theta Tau International Society, and an elected member of the International Statistical Institute.

作者簡介(中文翻譯)

伊沃·D·迪諾夫教授 目前在密西根大學負責統計在線計算資源(SOCR),並擔任密西根數據科學研究所(MIDAS)的副主任。他是數學建模、統計分析、高通量計算處理以及大型、複雜和異質數據集(大數據)的科學可視化方面的專家。迪諾夫博士正在開發、驗證和推廣新穎的技術增強教學方法,以促進STEM教育和主動數據科學學習。他在人工智慧和機器學習方面的工作涉及壓縮大數據分析、敏感數據的統計混淆、複雜時間(kime)表示法,以及基於模型和無模型的kimesurface分析技術。迪諾夫博士是美國統計學會、美國數學學會、美國物理學會、美國科學促進會的成員,也是國際統計學會的當選成員,以及Sigma Theta Tau國際學會的榮譽成員。