Data Science and Predictive Analytics: Biomedical and Health Applications Using R

Dinov, Ivo D.

  • 出版商: Springer
  • 出版日期: 2024-02-17
  • 售價: $3,310
  • 貴賓價: 9.5$3,145
  • 語言: 英文
  • 頁數: 918
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031174852
  • ISBN-13: 9783031174858
  • 相關分類: Data ScienceMachine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.

Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book's fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices.

This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.



商品描述(中文翻譯)

這本教科書整合了重要的數學基礎、高效的計算演算法、應用統計推論技術和尖端的機器學習方法,以應對廣泛的生物醫學資訊學、健康分析應用和決策科學挑戰。書中的每個概念都包含嚴謹的符號形式,配合計算演算法和完整的端到端流程協議,以功能性的 R 電子標記筆記本實現。這些工作流程支持主動學習,並展示了全面的數據操作、交互式可視化和複雜的分析。內容包括開放問題、最新科學知識、異質科學工具的道德整合以及系統驗證和可重複研究結果的傳播程序。

除了處理、詢問和理解大量複雜結構化和非結構化數據所面臨的巨大挑戰外,還存在著獨特的機會,即可以獲得豐富的特徵豐富、高維度和時變信息。《數據科學與預測分析》所涵蓋的主題解決了特定的知識差距,解決了教育障礙,並減輕了勞動力信息準備和數據科學不足的問題。具體而言,它提供了一個跨學科的課程,整合了核心數學原理、現代計算方法、先進的數據科學技術、基於模型的機器學習、無模型的人工智能和創新的生物醫學應用。該書的十四章從介紹開始,逐步建立從可視化到線性建模、維度降低、監督分類、黑盒機器學習技術、定性學習方法、無監督聚類、模型性能評估、特徵選擇策略、長期數據分析、優化、神經網絡和深度學習的基礎技能。該書的第二版還包括使用生成對抗網絡、遷移學習和合成數據生成的其他基於學習的策略,以及八個補充的電子附錄。

這本教科書適合正式的教學指導課程教育,也適合個人或團隊支持的自學。材料適用於高年級和研究生課程,涵蓋應用和跨學科數學、現代基於學習的數據科學技術、計算演算法開發、優化理論、統計計算和生物醫學科學。該書中描述的分析技術和預測科學方法對廣大讀者、正式和非正式學習者、大學教師、研究人員和工程師在學術界、工業界、政府、監管、資助和政策機構中可能有用。支持該書的網站提供了許多示例、數據集、功能腳本、完整的電子筆記本、廣泛的附錄和其他資料。

作者簡介

Professor Ivo D. Dinov directs the Statistics Online Computational Resource (SOCR) at the University of Michigan and serves as associate director of the Michigan Institute for Data Science (MIDAS). He is an expert in mathematical modeling, statistical analysis, high-throughput computational processing, and scientific visualization of large, complex and heterogeneous datasets (Big Data). Dr. Dinov is developing, validating, and disseminating novel technology-enhanced pedagogical approaches for STEM education and active data science learning. His artificial intelligence and machine learning work involves compressive big data analytics, statistical obfuscation of sensitive data, complex time (kime) representation, model-based and model-free techniques for kimesurface analytics. Dr. Dinov is a member of the American Statistical Association, the American Mathematical Society, the American Physical Society, the American Association for the Advancement of Science, an honorary member ofthe Sigma Theta Tau International Society, and an elected member of the International Statistical Institute.

作者簡介(中文翻譯)

Professor Ivo D. Dinov 是密西根大學的統計學在線計算資源(SOCR)的負責人,並擔任密西根大學數據科學研究所(MIDAS)的副主任。他是數學建模、統計分析、高通量計算處理和大型、複雜和異質數據集(大數據)的科學可視化方面的專家。Dinov博士正在開發、驗證和傳播用於STEM教育和主動數據科學學習的新技術增強教學方法。他的人工智能和機器學習工作涉及壓縮大數據分析、對敏感數據進行統計混淆、複雜時間(kime)表示、基於模型和無模型的kimesurface分析技術。Dinov博士是美國統計學會、美國數學學會、美國物理學會、美國科學促進協會的成員,是Sigma Theta Tau國際學會的榮譽會員,也是國際統計學會的當選會員。