Concentration and Gaussian Approximation for Randomized Sums
暫譯: 隨機總和的集中性與高斯近似
Bobkov, Sergey, Chistyakov, Gennadiy, Götze, Friedrich
- 出版商: Springer
- 出版日期: 2024-05-18
- 售價: $6,750
- 貴賓價: 9.5 折 $6,413
- 語言: 英文
- 頁數: 434
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031311515
- ISBN-13: 9783031311512
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book describes extensions of Sudakov's classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration of Lipschitz functions around their limiting mean, the authors proceed to derive concentration around limiting affine or polynomial functions, aiming towards a theory of higher order concentration based on functional inequalities of log-Sobolev and Poincaré type. These results make it possible to derive concentration of higher order for weighted sums of classes of dependent variables.
While the first part of the book discusses the basic notions and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.商品描述(中文翻譯)
這本書描述了Sudakov經典結果的擴展,針對加權和的依賴隨機變數的測度集中現象。書中的核心主題是隨機變數的加權和及其分佈在高斯法則周圍的集中性。分析是在高維球面上函數的測度集中更廣泛的背景下進行的。從通常的Lipschitz函數在其極限均值周圍的集中性開始,作者接著推導出圍繞極限仿射或多項式函數的集中性,旨在建立基於log-Sobolev和Poincaré型函數不等式的高階集中理論。這些結果使得能夠推導出依賴變數類別的加權和的高階集中性。
書的第一部分討論了本書其餘部分所需的概率和分析的基本概念和結果,而後面的部分則提供了集中性、球面上的分析、高階正態近似以及具有和不具有對稱性的依賴隨機變數的加權和類別的徹底闡述。