Session-Based Recommender Systems Using Deep Learning
暫譯: 基於會話的深度學習推薦系統

Ravanmehr, Reza, Mohamadrezaei, Rezvan

  • 出版商: Springer
  • 出版日期: 2023-12-21
  • 售價: $7,240
  • 貴賓價: 9.5$6,878
  • 語言: 英文
  • 頁數: 301
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031425588
  • ISBN-13: 9783031425585
  • 相關分類: 推薦系統DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied.

The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary.

This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems.


商品描述(中文翻譯)

本書專注於深度神經網絡的廣泛應用及其在基於會話的推薦系統(SBRS)中的各種技術。它從不同的角度展示了深度學習技術在許多 SBRS 應用中的成功。為此,本書詳細闡述了 SBRS 的概念和基本原理,並研究了專注於 SBRS 開發的不同深度學習技術。

本書結構良好,每一章都可以根據個人興趣和需求獨立閱讀。在本書的第一章中,回顧了與 SBRS 相關的定義和概念,並呈現了不同 SBRS 方法的分類,分別討論了每個類別的特徵和應用。第二章從深度學習的基本概念和每個模型的特徵開始,然後介紹了每個深度學習模型及其架構和數學基礎。接下來,第三章分析了基於會話的推薦系統中深度判別模型的不同方法。在第四章中,討論了受益於深度生成神經網絡的基於會話的推薦系統。隨後,第五章探討了使用先進/混合深度學習模型的基於會話的推薦系統。最後,第六章回顧了專注於信息檢索和推薦系統領域的不同學習排序方法。最後,書中進行的研究回顧的調查結果和發現以結論性摘要的形式呈現。

本書旨在幫助希望使用深度學習模型解決與 SBRS 相關挑戰的研究人員。目標讀者包括進入該領域的研究人員、專注於推薦系統、網絡數據挖掘、信息檢索或機器/深度學習的研究生,以及從事推薦系統工作的高級行業開發人員。

作者簡介

Reza Ravanmehr has been a faculty member of the Department of Computer Engineering at Central Tehran Branch, Islamic Azad University, since 2001. His main research interests are recommender systems, large-scale data management systems, and social network analysis. He has published over 60 scientific papers, mainly in social network analysis and recommender systems.

Rezvan Mohamadrezaei is currently a Ph.D. candidate in software systems at Central Tehran Branch, Islamic Azad University. Her current research interests are in the areas of deep learning, recommender systems, and information retrieval. She has been a faculty member of the Computer Engineering Department at Karoon Institute of Higher Education, Ahvaz, since 2013.


作者簡介(中文翻譯)

Reza Ravanmehr 自2001年以來一直是伊斯蘭阿茲哈大學中央德黑蘭分校計算機工程系的教職員。他的主要研究興趣包括推薦系統、大規模數據管理系統和社交網絡分析。他已發表超過60篇科學論文,主要集中在社交網絡分析和推薦系統領域。

Rezvan Mohamadrezaei 目前是伊斯蘭阿茲哈大學中央德黑蘭分校軟體系統的博士候選人。她目前的研究興趣包括深度學習、推薦系統和信息檢索。自2013年以來,她一直是阿瓦士卡魯恩高等教育學院計算機工程系的教職員。