Quantum Machine Learning: Thinking and Exploration in Neural Network Models for Quantum Science and Quantum Computing
暫譯: 量子機器學習:量子科學與量子計算中的神經網絡模型思考與探索

Conti, Claudio

  • 出版商: Springer
  • 出版日期: 2024-01-03
  • 售價: $5,080
  • 貴賓價: 9.5$4,826
  • 語言: 英文
  • 頁數: 378
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031442253
  • ISBN-13: 9783031442254
  • 相關分類: Machine Learning量子 Quantum量子計算
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents a new way of thinking about quantum mechanics and machine learning by merging the two. Quantum mechanics and machine learning may seem theoretically disparate, but their link becomes clear through the density matrix operator which can be readily approximated by neural network models, permitting a formulation of quantum physics in which physical observables can be computed via neural networks. As well as demonstrating the natural affinity of quantum physics and machine learning, this viewpoint opens rich possibilities in terms of computation, efficient hardware, and scalability. One can also obtain trainable models to optimize applications and fine-tune theories, such as approximation of the ground state in many body systems, and boosting quantum circuits' performance. The book begins with the introduction of programming tools and basic concepts of machine learning, with necessary background material from quantum mechanics and quantum information also provided. This enables the basic building blocks, neural network models for vacuum states, to be introduced. The highlights that follow include: non-classical state representations, with squeezers and beam splitters used to implement the primary layers for quantum computing; boson sampling with neural network models; an overview of available quantum computing platforms, their models, and their programming; and neural network models as a variational ansatz for many-body Hamiltonian ground states with applications to Ising machines and solitons. The book emphasizes coding, with many open source examples in Python and TensorFlow, while MATLAB and Mathematica routines clarify and validate proofs. This book is essential reading for graduate students and researchers who want to develop both the requisite physics and coding knowledge to understand the rich interplay of quantum mechanics and machine learning.

商品描述(中文翻譯)

本書提出了一種全新的思維方式,通過將量子力學與機器學習相結合來探討這兩者。量子力學和機器學習在理論上似乎是截然不同的,但通過密度矩陣算子,它們之間的聯繫變得清晰,該算子可以通過神經網絡模型輕鬆近似,從而允許以一種形式化的方式來計算物理可觀測量。這種觀點不僅展示了量子物理與機器學習之間的自然親和力,還在計算、有效硬體和可擴展性方面開啟了豐富的可能性。人們還可以獲得可訓練的模型來優化應用程序和微調理論,例如在多體系統中近似基態,以及提升量子電路的性能。本書首先介紹了編程工具和機器學習的基本概念,並提供了量子力學和量子信息的必要背景材料。這使得基本構建塊——真空態的神經網絡模型得以引入。接下來的重點包括:非經典態表示,使用擠壓器和光束分 splitter 實現量子計算的主要層;使用神經網絡模型的玻色取樣;可用量子計算平台的概述、其模型及其編程;以及作為多體哈密頓基態變分假設的神經網絡模型,並應用於 Ising 機器和孤子。本書強調編碼,提供了許多用 Python 和 TensorFlow 的開源範例,同時 MATLAB 和 Mathematica 的例程則用於澄清和驗證證明。本書是研究生和研究人員必讀的資料,旨在幫助他們發展理解量子力學與機器學習之間豐富相互作用所需的物理和編碼知識。

作者簡介

Claudio Conti is an associate professor at the Department of Physics of the University Sapienza of Rome. He authored over 250 articles in many fields, such as quantum physics, photonics, nonlinear science, biophysics, and complexity. His activity includes experiments and theory, such as the first observation of replica symmetry breaking mentioned in the scientific background of the Nobel prize in physics in 2021, the investigation of neuromorphic computing by quantum fluids, and the optical acceleration of natural language processing. Claudio Conti coordinates an experimental and theoretical group in Rome exploring the frontiers of artificial intelligence and physics.

作者簡介(中文翻譯)

克勞迪奧·孔提(Claudio Conti)是羅馬薩賓納大學(University Sapienza of Rome)物理系的副教授。他在量子物理、光子學、非線性科學、生物物理學和複雜性等多個領域發表了超過250篇文章。他的研究活動包括實驗和理論,例如在2021年諾貝爾物理學獎的科學背景中提到的首次觀察到的複製對稱破缺、通過量子流體研究神經形態計算,以及自然語言處理的光學加速。克勞迪奧·孔提負責在羅馬的一個實驗和理論小組,探索人工智慧和物理學的前沿。

最後瀏覽商品 (20)