Artificial Intelligent Approaches in Petroleum Geosciences
暫譯: 石油地球科學中的人工智慧方法

Cranganu, Constantin

  • 出版商: Springer
  • 出版日期: 2025-07-16
  • 售價: $3,660
  • 貴賓價: 9.5$3,477
  • 語言: 英文
  • 頁數: 277
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031527178
  • ISBN-13: 9783031527173
  • 相關分類: Machine Learning其他
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents cutting-edge approaches to solving practical problems faced by professionals in the petroleum industry and geosciences. With various state-of-the-art working examples from experienced academics, the book offers an exposure to the latest developments in intelligent methods for oil and gas research, exploration, and production. This second edition is updated with new chapters on machine learning approaches, data-driven modelling techniques, and neural networks.

The book delves into machine learning approaches, including evolutionary algorithms, swarm intelligence, fuzzy logic, deep artificial neural networks, KNN, decision tree, random forest, XGBoost, and LightGBM. it also analyzes the strengths and weaknesses of each method and emphasizes essential parameters like robustness, accuracy, speed of convergence, computer time, overlearning, and normalization.

Integration, data handling, risk management, and uncertainty management are all crucial issues in petroleum geosciences. The complexities of these problems require a multidisciplinary approach that fuses petroleum engineering, geology, geophysics, and geochemistry. Essentially, this book presents an approach for integrating various disciplines such as data fusion, risk reduction, and uncertainty management.

Whether you are a professional or a student, you can greatly benefit from the latest advancements in intelligent methods applied to oil and gas research. This comprehensive and updated book presents cutting-edge approaches and real-world examples that can help you in solving the intricate challenges of the petroleum industry and geosciences.

商品描述(中文翻譯)

本書介紹了針對石油產業和地球科學專業人士所面臨的實際問題的前沿解決方案。透過來自經驗豐富的學者的各種最先進的工作範例,本書提供了對於油氣研究、勘探和生產中智能方法最新發展的了解。本書的第二版更新了有關機器學習方法、數據驅動建模技術和神經網絡的新章節。

本書深入探討了機器學習方法,包括進化算法、群體智慧、模糊邏輯、深度人工神經網絡、KNN、決策樹、隨機森林、XGBoost 和 LightGBM。它還分析了每種方法的優缺點,並強調了如穩健性、準確性、收斂速度、計算時間、過度學習和正規化等重要參數。

整合、數據處理、風險管理和不確定性管理在石油地球科學中都是至關重要的問題。這些問題的複雜性需要一種多學科的方法,融合石油工程、地質學、地球物理學和地球化學。實質上,本書提出了一種整合數據融合、風險降低和不確定性管理等各種學科的方法。

無論您是專業人士還是學生,您都可以從應用於油氣研究的智能方法的最新進展中獲益良多。本書全面且更新,展示了前沿的方法和實際範例,幫助您解決石油產業和地球科學中的複雜挑戰。