Manifold Learning: Model Reduction in Engineering
暫譯: 流形學習:工程中的模型簡化

Ryckelynck, David, Casenave, Fabien, Akkari, Nissrine

  • 出版商: Springer
  • 出版日期: 2024-02-21
  • 售價: $1,660
  • 貴賓價: 9.5$1,577
  • 語言: 英文
  • 頁數: 107
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031527666
  • ISBN-13: 9783031527661
  • 相關分類: Data ScienceMachine LearningDeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces.
Projection-based reduced order models are the projection of mechanical equations on a latent space that have been learnt from both synthetic data and experimental data. Various descriptions and representations of structured data for model reduction are presented in the applications and survey chapters. Image-based digital twins are developed in a reduced setting. Reduced order models of as-manufactured components predict the mechanical effects of shape variations. A similar workflow is extended to multiphysics or coupled problems, with high dimensional input fields. Practical techniques are proposed for data augmentation and also for hyper-reduction, which is a key point to speed up projection-based model order reduction of finite element models.

The book gives access to python libraries available on gitlab.com, which have been developed as part of the research program [FUI-25] MORDICUS funded by the French government. Similarly to deep learning for computer vision, deep learning for model order reduction circumvents the need to design parametric problems prior reducing models. Such an approach is highly relevant for image-base modelling or multiphysics modelling.

商品描述(中文翻譯)

這本開放存取的書籍回顧了在連續介質力學中非線性模型階數降低的最新理論和數值發展,主要針對碩士和博士生,以及研究人員、講師和指導者。作者的目標是提供工具,以便更好地理解並實現降低階數的模型,使用的方法包括:基於物理的模型、這些模型預測的合成數據、實驗數據和深度學習算法。這本書涉及了應用於基於模型的工程和數位雙胞胎的模型階數降低的關鍵方法調查,通過學習線性或非線性潛在空間來實現。

基於投影的降低階數模型是將機械方程投影到從合成數據和實驗數據中學習到的潛在空間。應用和調查章節中展示了各種結構化數據的描述和表示,用於模型降低。基於影像的數位雙胞胎在降低的設置中開發。製造後組件的降低階數模型預測形狀變化的機械效應。類似的工作流程擴展到多物理或耦合問題,具有高維輸入場。提出了數據增強和超降低的實用技術,這是加速基於投影的有限元素模型的模型階數降低的關鍵點。

這本書提供了在gitlab.com上可用的python庫,這些庫是作為法國政府資助的研究計劃[FUI-25] MORDICUS的一部分開發的。類似於計算機視覺的深度學習,模型階數降低的深度學習繞過了在降低模型之前設計參數問題的需求。這種方法對於基於影像的建模或多物理建模具有高度相關性。

作者簡介

David Ryckelynck is working on model-based/physics-based engineering assisted by machine learning. He did seminal works on hyper-reduction methods, in the field of applied mathematics and computational mechanics. He is the head of a lecture on Ingénierie Digitale Des Systemes Complexes (Data Science for Computational Engineering) at Mines Paris PSL University.
Fabien Casenave is a research scientist at Safran Tech, the research center of Safran Group, a French multinational company that designs, develops and manufactures aircraft engines, rocket engines as well as various aerospace and defense-related equipment or their components. As head of the Physics-Informed AI and Numerical Experiments team, Fabien has been working on model-based/physics-based engineering assisted by machine learning applied to industrial design challenges in structural mechanics.

Nissrine Akkari is a research scientist at Safran Tech. She has been working on model-based/physics-based engineering assisted by machine learning applied to industrial design challenges in computational fluid dynamics.

作者簡介(中文翻譯)

David Ryckelynck 正在從事基於模型/基於物理的工程,並輔以機器學習。他在應用數學和計算力學領域對超簡化方法進行了開創性的研究。他是巴黎高等礦業學院(Mines Paris PSL University)複雜系統數位工程(Ingénierie Digitale Des Systemes Complexes,計算工程的數據科學)課程的負責人。
Fabien Casenave 是法國賽峰集團(Safran Group)研究中心 Safran Tech 的研究科學家,該集團是一家設計、開發和製造飛機引擎、火箭引擎以及各種航空航天和國防相關設備或其組件的跨國公司。作為物理知識驅動的人工智慧與數值實驗團隊的負責人,Fabien 一直在從事基於模型/基於物理的工程,並輔以機器學習,應用於結構力學中的工業設計挑戰。

Nissrine Akkari 是 Safran Tech 的研究科學家。她一直在從事基於模型/基於物理的工程,並輔以機器學習,應用於計算流體力學中的工業設計挑戰。