Python for Natural Language Processing: Programming with Numpy, Scikit-Learn, Keras, and Pytorch
暫譯: 自然語言處理的 Python:使用 Numpy、Scikit-Learn、Keras 和 Pytorch 編程
Nugues, Pierre M.
- 出版商: Springer
- 出版日期: 2025-07-11
- 售價: $2,290
- 貴賓價: 9.5 折 $2,176
- 語言: 英文
- 頁數: 520
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031575512
- ISBN-13: 9783031575518
-
相關分類:
Natural Language Processing
海外代購書籍(需單獨結帳)
相關主題
商品描述
Since the last edition of this book (2014), progress has been astonishing in all areas of Natural Language Processing, with recent achievements in Text Generation that spurred a media interest going beyond the traditional academic circles. Text Processing has meanwhile become a mainstream industrial tool that is used, to various extents, by countless companies. As such, a revision of this book was deemed necessary to catch up with the recent breakthroughs, and the author discusses models and architectures that have been instrumental in the recent progress of Natural Language Processing.
As in the first two editions, the intention is to expose the reader to the theories used in Natural Language Processing, and to programming examples that are essential for a deep understanding of the concepts. Although present in the previous two editions, Machine Learning is now even more pregnant, having replaced many of the earlier techniques to process text. Many new techniques build on the availability of text.
Using Python notebooks, the reader will be able to load small corpora, format text, apply the models through executing pieces of code, gradually discover the theoretical parts by possibly modifying the code or the parameters, and traverse theories and concrete problems through a constant interaction between the user and the machine. The data sizes and hardware requirements are kept to a reasonable minimum so that a user can see instantly, or at least quickly, the results of most experiments on most machines.
The book does not assume a deep knowledge of Python, and an introduction to this language aimed at Text Processing is given in Ch. 2, which will enable the reader to touch all the programming concepts, including NumPy arrays and PyTorch tensors as fundamental structures to represent and process numerical data in Python, or Keras for training Neural Networks to classify texts. Covering topics like Word Segmentation and Part-of-Speech and Sequence Annotation, the textbook also gives an in-depth overview of Transformers (for instance, BERT), Self-Attention and Sequence-to-Sequence Architectures.
商品描述(中文翻譯)
自從本書的上一版(2014年)以來,自然語言處理的各個領域進展驚人,最近在文本生成方面的成就引發了超越傳統學術界的媒體關注。文本處理已成為主流的工業工具,無數公司在不同程度上使用它。因此,對本書進行修訂被認為是必要的,以跟上最近的突破,作者討論了在自然語言處理最近進展中發揮重要作用的模型和架構。
與前兩版一樣,本書的目的是讓讀者接觸到自然語言處理中使用的理論,以及對於深入理解這些概念至關重要的程式範例。儘管在前兩版中已經存在,機器學習現在變得更加重要,取代了許多早期的文本處理技術。許多新技術建立在文本可用性的基礎上。
使用Python筆記本,讀者將能夠加載小型語料庫、格式化文本、通過執行程式碼片段應用模型,逐步發現理論部分,可能通過修改程式碼或參數來進行探索,並通過用戶與機器之間的持續互動來穿越理論和具體問題。數據大小和硬體要求保持在合理的最低限度,以便用戶能夠立即或至少快速看到大多數實驗在大多數機器上的結果。
本書不假設讀者對Python有深入的了解,第二章提供了針對文本處理的這門語言的介紹,使讀者能夠接觸到所有的程式設計概念,包括NumPy陣列和PyTorch張量,這些都是在Python中表示和處理數據的基本結構,或使用Keras訓練神經網絡以分類文本。本書涵蓋了詞彙切分、詞性標註和序列標註等主題,並對變壓器(例如BERT)、自注意力和序列到序列架構進行了深入的概述。