Geometry and Quantum Features of Special Relativity
暫譯: 特殊相對論的幾何與量子特徵
Dragon, Norbert
- 出版商: Springer
- 出版日期: 2025-06-28
- 售價: $3,940
- 貴賓價: 9.5 折 $3,743
- 語言: 英文
- 頁數: 288
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031711483
- ISBN-13: 9783031711480
-
相關分類:
量子 Quantum
海外代購書籍(需單獨結帳)
商品描述
作者簡介
Norbert Dragon is a retired Professor of Theoretical Physics at Leibniz University Hannover in Germany. He studied Physics at Technische Hochschule Karlsruhe, where he completed his PhD under Julius Wess in 1977. These were the years when Wess and Zumino were establishing and expanding Supersymmetry and Supergravity. Among his fellow students at the same institute were Martin Sohnius, Richard Grimm, Klaus Sibold, and Hermann Nicolai.
He worked as an assistant to Berthold Stech at Universität Heidelberg from 1979 to 1986. Since 1988, he has been a Professor at the Institut für Theoretische Physik at Universität Hannover. He retired in 2016.
He enjoyed teaching beginners as much as he did teaching PhD students, covering advanced topics such as Supersymmetry and BRST-symmetry, to which he has contributed research papers. In his teaching, he aimed to find everyday examples for abstract mathematical concepts. For instance, a shopping list and commodity prices exemplify high-dimensional vector spaces and their duals. Similarly, holes in trousers and patches of cloth have areas of opposite signs because the areas cancel out when mending holes. Thus, the concept of positive and negative areas becomes commonplace and comprehensible.
作者簡介(中文翻譯)
諾伯特·德拉貢是德國漢諾威大學的退休理論物理學教授。他在卡爾斯魯厄理工大學(Technische Hochschule Karlsruhe)學習物理,並於1977年在尤利烏斯·維斯(Julius Wess)指導下完成博士學位。那段時間,維斯和祖米諾(Zumino)正在建立和擴展超對稱(Supersymmetry)和超引力(Supergravity)。在同一學院的同學中有馬丁·索尼烏斯(Martin Sohnius)、理查德·格里姆(Richard Grimm)、克勞斯·西博德(Klaus Sibold)和赫爾曼·尼科萊(Hermann Nicolai)。
他於1979年至1986年間在海德堡大學(Universität Heidelberg)擔任伯特霍爾德·施特赫(Berthold Stech)的助理。自1988年以來,他一直是漢諾威大學理論物理學研究所(Institut für Theoretische Physik)的教授,並於2016年退休。
他喜歡教導初學者,與教導博士生一樣,涵蓋超對稱和BRST對稱等高級主題,並為此貢獻了研究論文。在教學中,他旨在為抽象的數學概念找到日常生活中的例子。例如,購物清單和商品價格可以用來說明高維向量空間及其對偶。同樣,褲子上的洞和布片的面積具有相反的符號,因為在修補洞時,面積會相互抵消。因此,正面積和負面積的概念變得平常且易於理解。