Recent Advances in Time-Series Classification--Methodology and Applications
暫譯: 時間序列分類的最新進展──方法論與應用

Gellér, Zoltán, Kurbalija, Vladimir, Radovanovic, Milos

  • 出版商: Springer
  • 出版日期: 2025-04-27
  • 售價: $6,440
  • 貴賓價: 9.5$6,118
  • 語言: 英文
  • 頁數: 327
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031775260
  • ISBN-13: 9783031775260
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book examines the impact of such constraints on elastic time-series similarity measures and provides guidance on selecting suitable measures. Time-series classification frequently relies on selecting an appropriate similarity or distance measure to compare time series effectively, often using dynamic programming techniques for more robust results. However, these techniques can be computationally demanding, which results in the usage of global constraints to reduce the search area in the dynamic programming matrix. While these constraints cut computation time significantly (by up to three orders of magnitude), they may also affect classification accuracy.

Additionally, the importance of the nearest neighbor classifier (1NN) is emphasized for its strong performance in time-series classification, alongside the kNN classifier which offers stable results. This book further explores the weighted kNN classifier, which gives closer neighbors more influence, showing how it merges accuracy and stability for improved classification outcomes.

商品描述(中文翻譯)

本書探討這些限制對彈性時間序列相似性度量的影響,並提供選擇合適度量的指導。時間序列分類通常依賴於選擇適當的相似性或距離度量,以有效比較時間序列,並經常使用動態規劃技術以獲得更穩健的結果。然而,這些技術可能計算需求高,導致使用全局約束來減少動態規劃矩陣中的搜尋範圍。雖然這些約束顯著縮短了計算時間(可達三個數量級),但也可能影響分類的準確性。

此外,最近鄰分類器(1NN)的重要性被強調,因為它在時間序列分類中表現出色,與此同時,kNN分類器也提供穩定的結果。本書進一步探討加權kNN分類器,該分類器使得更接近的鄰居具有更大的影響力,顯示它如何融合準確性和穩定性,以改善分類結果。