Advanced Portfolio Optimization: A Cutting-Edge Quantitative Approach
暫譯: 進階投資組合優化:前沿的量化方法
Cajas, Dany
相關主題
商品描述
This book is an innovative and comprehensive guide that provides readers with the knowledge about the latest trends, models and algorithms used to build investment portfolios and the practical skills necessary to apply them in their own investment strategies. It integrates latest advanced quantitative techniques into portfolio optimization, raises questions about which alternatives to modern portfolio theory exists and how they can be applied to improve the performance of multi-asset portfolios. It provides answers and solutions by offering practical tools and code samples that enable readers to implement advanced portfolio optimization techniques and make informed investment decisions.
Portfolio Optimization goes beyond traditional portfolio theory (Quadratic Programming), incorporating last advances in convex optimization techniques and cutting-edge machine learning algorithms. It extensively addresses risk management and uncertainty quantification, teaching readers how to measure and minimize various forms of risk in their portfolios. This book goes beyond traditional back testing methodologies based on historical data for investment portfolios, incorporating tools to create synthetic datasets and robust methodologies to identify better investment strategies considering real aspects like transaction costs.
The author provides several methodologies for estimating the input parameters of investment portfolio optimization models, from classical statistics to more advanced models, such as graph-based estimators and Bayesian estimators, provide a deep understanding of advanced convex optimization models and machine learning algorithms for building investment portfolios and the necessary tools to design the back testing of investment portfolios using several methodologies based on historical and synthetic datasets that allow readers identify the better investment strategies.
商品描述(中文翻譯)
這本書是一部創新且全面的指南,為讀者提供有關最新趨勢、模型和算法的知識,這些知識用於建立投資組合,以及在自己的投資策略中應用這些知識所需的實用技能。它將最新的先進量化技術整合到投資組合優化中,提出了現代投資組合理論的替代方案以及如何應用這些方案來改善多資產投資組合的表現。它通過提供實用工具和代碼範例來回答這些問題,使讀者能夠實施先進的投資組合優化技術並做出明智的投資決策。
投資組合優化超越了傳統的投資組合理論(Quadratic Programming),融入了最新的凸優化技術和尖端的機器學習算法。它廣泛地探討了風險管理和不確定性量化,教導讀者如何衡量和最小化其投資組合中的各種風險形式。這本書超越了基於歷史數據的傳統回測方法,融入了創建合成數據集的工具和穩健的方法論,以考慮交易成本等現實因素來識別更好的投資策略。
作者提供了幾種方法來估計投資組合優化模型的輸入參數,從經典統計到更先進的模型,如基於圖的估計器和貝葉斯估計器,深入理解先進的凸優化模型和機器學習算法,以建立投資組合,並提供必要的工具來設計投資組合的回測,使用基於歷史和合成數據集的多種方法論,幫助讀者識別更好的投資策略。
作者簡介
Dany Cajas is the creator and sole maintainer of the Riskfolio-Lib portfolio optimization Python library, one of the most popular finance libraries worldwide with more than 3,100 stars on Github and more than 600k downloads. He has experience in financial planning, management control, quantitative financial risk management, pricing of financial derivative instruments and portfolio construction. He has teaching experience in Python programming for quantitative finance courses for students in North America, South America, Asia, and Europe through his company Orenji EIRL.
作者簡介(中文翻譯)
Dany Cajas 是 Riskfolio-Lib 投資組合優化 Python 函式庫的創建者和唯一維護者,這是全球最受歡迎的金融函式庫之一,在 Github 上擁有超過 3,100 顆星和超過 60 萬次下載。他在財務規劃、管理控制、量化金融風險管理、金融衍生工具定價和投資組合建構方面擁有豐富的經驗。他透過他的公司 Orenji EIRL,為北美、南美、亞洲和歐洲的學生教授量化金融課程中的 Python 程式設計。