A Theory of Traces and the Divergence Theorem
暫譯: 痕跡理論與散度定理
Schuricht, Friedemann, Schönherr, Moritz
- 出版商: Springer
- 出版日期: 2025-08-12
- 售價: $3,010
- 貴賓價: 9.8 折 $2,950
- 語言: 英文
- 頁數: 174
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031866630
- ISBN-13: 9783031866630
-
相關分類:
微積分 Calculus
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book provides a new approach to traces, which are viewed as linear continuous functionals on some function space. A key role in the analysis is played by integrals related to finitely additive measures, which have not previously been considered in the literature. This leads to Gauss-Green formulas on arbitrary Borel sets for vector fields having divergence measure as well as for Sobolev and BV functions. The integrals used do not require trace functions or normal fields on the boundary and they can deal with inner boundaries. For the treatment of apparently intractable degenerate cases a second boundary integral is used. The calculus developed here also allows integral representations for the precise representative of an integrable function and for the usual boundary trace of Sobolev or BV functions. The theory presented gives a new perspective on traces for beginners as well as experts interested in partial differential equations. The integral calculus might also be a stimulating tool for geometric measure theory.
商品描述(中文翻譯)
本書提供了一種新的方法來處理跡(traces),這些跡被視為某些函數空間上的線性連續泛函。在分析中,與有限可加測度相關的積分扮演了關鍵角色,而這在文獻中尚未被考慮。這導致了對於具有散度測度的向量場以及 Sobolev 和 BV 函數的任意 Borel 集的高斯-格林公式。所使用的積分不需要邊界上的跡函數或法向場,並且可以處理內邊界。為了處理明顯難以處理的退化情況,使用了第二個邊界積分。這裡發展的微積分也允許對可積函數的精確代表以及 Sobolev 或 BV 函數的通常邊界跡進行積分表示。所呈現的理論為對於初學者和對偏微分方程感興趣的專家提供了對跡的新視角。這種積分微積分也可能成為幾何測度理論的一個激勵工具。
作者簡介
Friedemann Schuricht is Professor of Mathematics at TU Dresden, Germany. His main research interests are in nonlinear analysis and its applications. In particular, he has worked on problems in the calculus of variations, partial differential equations, nonsmooth analysis, geometric analysis, and related applications in continuum mechanics. Moritz Schönherr studied mathematics and completed his doctorate at TU Dresden, Germany. He has worked on problems in partial differential equations, measure theory and the foundations of continuum mechanics. Currently he has a business position in Copenhagen, Denmark.
作者簡介(中文翻譯)
弗里德曼·舒里希特是德國德累斯頓工業大學的數學教授。他的主要研究興趣在於非線性分析及其應用。特別是,他曾研究變分法、偏微分方程、非光滑分析、幾何分析及其在連續介質力學中的相關應用問題。 莫里茨·肖恩赫在德國德累斯頓工業大學學習數學並完成博士學位。他曾研究偏微分方程、測度理論及連續介質力學的基礎。目前,他在丹麥哥本哈根擔任商業職位。