Graph Minors: Theory and Applications
暫譯: 圖的次要:理論與應用

Dvořák, Zdeněk

  • 出版商: Springer
  • 出版日期: 2025-08-04
  • 售價: $5,990
  • 貴賓價: 9.5$5,691
  • 語言: 英文
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031874684
  • ISBN-13: 9783031874680
  • 尚未上市,無法訂購

相關主題

商品描述

Graph minor theory is one of the most influential and well-developed areas of graph theory, yet its key results, particularly the work of Robertson and Seymour, have remained scattered across numerous technical papers. This book fills an important gap by providing a comprehensive, structured treatment of the subject.

Divided into three main parts, the book first introduces the fundamentals of graph minor theory, focusing on the deep and powerful Minor Structure Theorem. It offers a clear roadmap for understanding the theorem's proof, presenting its key ingredients while omitting only the most technical details. The second part explores a variety of applications, from algorithmic results to connections with the Linear Hadwiger Conjecture and graph coloring problems. The final section presents alternative approaches to graph minor theory that do not rely on the Minor Structure Theorem, covering topics such as sublinear separators, density, and isomorphism testing.

The exposition is rigorous yet accessible, striving to balance depth with readability. While some parts remain dense due to the complexity of the subject, the author provides valuable insights and explanations that make challenging concepts more approachable. The book not only serves as an excellent learning resource for graduate students and researchers entering the field but also as a long-lasting reference for experts.

商品描述(中文翻譯)

圖形次要理論是圖形理論中最具影響力且發展完善的領域之一,然而其關鍵結果,特別是 Robertson 和 Seymour 的研究,仍然散佈在眾多技術論文中。本書填補了一個重要的空白,提供了該主題的全面且結構化的處理。

本書分為三個主要部分,首先介紹圖形次要理論的基本概念,重點在於深刻且強大的次要結構定理(Minor Structure Theorem)。它提供了一個清晰的路線圖,以理解該定理的證明,呈現其關鍵成分,同時僅省略最技術性的細節。第二部分探討各種應用,從算法結果到與線性 Hadwiger 猜想(Linear Hadwiger Conjecture)及圖形著色問題的聯繫。最後一部分介紹不依賴於次要結構定理的圖形次要理論的替代方法,涵蓋子線性分隔器(sublinear separators)、密度(density)和同構測試(isomorphism testing)等主題。

本書的闡述嚴謹而易於理解,努力在深度與可讀性之間取得平衡。雖然由於主題的複雜性某些部分仍然較為密集,但作者提供了寶貴的見解和解釋,使得挑戰性的概念更易於接近。本書不僅是進入該領域的研究生和研究人員的優秀學習資源,也是專家的長期參考資料。

作者簡介

Zdeněk Dvořák is currently employed as a professor at Computer Science Institute of Charles University, Prague. He obtained his Master Degree (Mgr) (summa cum laude) in Computer Science at Faculty of Mathematics and Physics of Charles University, Prague in September 2004 and his PhD degree at Faculty of Mathematics and Physics of Charles University, Prague in May 2007. He is the author of over 100 papers published in journals or presented at selective conferences, with 529 citations (H-index 13 according to the Web of Science). His research interests include graph coloring, structural graph theory, and algorithms and complexity. He has been the Managing editor of the Journal of Combinatorial Theory, Series B since 2016, one of Editors-in-chief of Electronic Journal of Combinatorics since 2017 (associate editor in 2014-2016) and was the Associate editor of Discrete Mathematics (2013-2015). He is the recipient of many prestigious awards including the European Prize in Combinatorics in 2015, the prize of the Czech Union of Mathematicians for young mathematicians in 2014, the Neuron prize for young mathematicians given by Karel Janecek foundation in 2011, and the Josef Hlavka award in 2004. His hobbies include hiking, practicing Shinto Muso Ryu Jodo, reading sci-fi and fantasy books.

作者簡介(中文翻譯)

Zdeněk Dvořák 目前擔任布拉格查理大學計算機科學研究所的教授。他於2004年9月在布拉格查理大學數學與物理學院獲得計算機科學碩士學位(Mgr)(以優異成績畢業),並於2007年5月在同一學院獲得博士學位。他是超過100篇發表於期刊或在選定會議上報告的論文的作者,根據Web of Science的資料,他的引用次數為529次(H指數13)。他的研究興趣包括圖著色、結構圖論以及演算法與複雜性。他自2016年以來擔任《組合理論期刊B系列》的主編,自2017年以來擔任《電子組合學期刊》的主編之一(2014-2016年擔任副編輯),並曾於2013-2015年擔任《離散數學》的副編輯。他獲得了許多著名獎項,包括2015年的歐洲組合學獎、2014年捷克數學家聯盟頒發的青年數學家獎、2011年由卡雷爾·雅內克基金會頒發的青年數學家Neuron獎,以及2004年的約瑟夫·赫拉夫卡獎。他的興趣包括健行、練習神道無雙流杖道,以及閱讀科幻和奇幻書籍。