Geometry of Integrable Systems: An Introduction
暫譯: 可積系統的幾何學:入門指南
Arsie, Alessandro, Mencattini, Igor
- 出版商: Springer
- 出版日期: 2026-01-10
- 售價: $3,000
- 貴賓價: 9.8 折 $2,940
- 語言: 英文
- 頁數: 564
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031962818
- ISBN-13: 9783031962813
-
相關分類:
工程數學 Engineering-mathematics
海外代購書籍(需單獨結帳)
商品描述
This textbook explores differential geometrical aspects of the theory of completely integrable Hamiltonian systems. It provides a comprehensive introduction to the mathematical foundations and illustrates it with a thorough analysis of classical examples.
This book is organized into two parts. Part I contains a detailed, elementary exposition of the topics needed to start a serious geometrical analysis of complete integrability. This includes a background in symplectic and Poisson geometry, the study of Hamiltonian systems with symmetry, a primer on the theory of completely integrable systems, and a presentation of bi-Hamiltonian geometry.
Part II is devoted to the analysis of three classical examples of integrable systems. This includes the description of the (free) n-dimensional rigid-body, the rational Calogero-Moser system, and the open Toda system. In each case, ths system is described, its integrability is discussed, and at least one of its (known) bi-Hamiltonian descriptions is presented.
This work can benefit advanced undergraduate and beginning graduate students with a strong interest in geometrical methods of mathematical physics. Prerequisites include an introductory course in differential geometry and some familiarity with Hamiltonian and Lagrangian mechanics.
商品描述(中文翻譯)
這本教科書探討完全可積分哈密頓系統理論的微分幾何方面。它提供了數學基礎的全面介紹,並通過對經典範例的徹底分析來說明這些概念。
本書分為兩個部分。第一部分包含了詳細且基礎的內容,介紹開始進行完全可積分性幾何分析所需的主題。這包括辛幾何和泊松幾何的背景、具有對稱性的哈密頓系統的研究、完全可積分系統理論的入門,以及雙哈密頓幾何的介紹。
第二部分專注於三個經典可積分系統的分析。這包括對(自由)n維剛體的描述、理性Calogero-Moser系統以及開放的Toda系統。在每個案例中,系統的描述、其可積分性討論,以及至少一種(已知的)雙哈密頓描述都會被呈現。
這部作品對於對數學物理的幾何方法有濃厚興趣的高年級本科生和初學研究生都會有所幫助。先修課程包括微分幾何的入門課程以及對哈密頓和拉格朗日力學的基本了解。
作者簡介
作者簡介(中文翻譯)
伊戈爾·門卡蒂尼是聖保羅大學(University of São Paulo)聖卡洛斯校區數學與計算機科學研究所的副教授。他的專業領域是數學物理,特別強調古典力學系統的幾何和代數方面。他於2005年獲得波士頓大學的博士學位,並在德國和意大利進行了博士後研究。 亞歷山德羅·阿爾西是美國托萊多大學(University of Toledo)數學與統計系的數學教授。他目前的研究興趣集中在數學物理和微分幾何中的幾何和代數技術。他於2001年在意大利的國際高等研究院(Scuola Internazionale Superiore di Studi Avanzati, SISSA)獲得博士學位,並在意大利和美國進行了博士後研究。