Optimal Stability Theory and Approximate Solutions of Fractional Systems: New Results on the Analysis of Fractional Equations: Theoretical Insights an
暫譯: 最佳穩定性理論與分數系統的近似解:分數方程分析的新結果:理論見解

Eidinejad, Zahra, Saadati, Reza, Allahviranloo, Tofigh

  • 出版商: Springer
  • 出版日期: 2025-10-02
  • 售價: $7,890
  • 貴賓價: 9.5$7,496
  • 語言: 英文
  • 頁數: 383
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031967038
  • ISBN-13: 9783031967030
  • 相關分類: 數值分析 Numerical-analysis
  • 海外代購書籍(需單獨結帳)

商品描述

This comprehensive book is designed for undergraduate, master's, and doctoral students in mathematics, as well as scholars interested in a deep understanding of fractional problems. The book covers a wide range of topics, including the existence and uniqueness of solutions, stability, optimal controllers, special functions, classical and fuzzy normed spaces, matrix functions, fuzzy matrix normed spaces, fixed-point theory, quality and certainty, and various numerical methods.

The primary objective of this book is to analyze the existence and uniqueness of solutions for functional equations, analyze stability, and achieve the best possible results with minimal error. With a clear and direct approach, it presents advanced concepts in an accessible and comprehensible manner, enabling students to apply their knowledge to solving various problems.

To prevent instability in fractional systems, methods based on fixed-point theory with the best approximation have been utilized. The stability analysis of fractional equations is conducted by considering classical and fuzzy normed spaces and employing special functions as optimal controllers. In fuzzy systems, the Z-number theory has been used to enhance results and improve quality. This theory enables the assessment of approximation accuracy and quality, providing the best possible approximation.

The numerical analysis of fractional systems plays a crucial role in accurately modeling physical phenomena, simulations, and predicting complex systems. By presenting numerical results from fractional systems, which are essential in solving real-world problems and optimizing computational algorithms, this book serves as a valuable resource for both researchers and students.

商品描述(中文翻譯)

這本綜合性的書籍專為數學的本科生、碩士生和博士生,以及對分數問題有深入理解興趣的學者而設計。書中涵蓋了廣泛的主題,包括解的存在性和唯一性、穩定性、最佳控制器、特殊函數、經典與模糊範數空間、矩陣函數、模糊矩陣範數空間、不動點理論、質量與確定性,以及各種數值方法。

本書的主要目標是分析泛函方程的解的存在性和唯一性,分析穩定性,並以最小的誤差達到最佳的結果。以清晰直接的方式呈現高級概念,使學生能夠以易於理解的方式應用他們的知識來解決各種問題。

為了防止分數系統的不穩定性,已利用基於不動點理論的最佳近似方法。分數方程的穩定性分析是通過考慮經典與模糊範數空間並使用特殊函數作為最佳控制器來進行的。在模糊系統中,已使用Z數理論來增強結果並改善質量。這一理論使得評估近似準確性和質量成為可能,提供最佳的近似結果。

分數系統的數值分析在準確建模物理現象、模擬和預測複雜系統中扮演著至關重要的角色。通過呈現來自分數系統的數值結果,這些結果對於解決現實世界問題和優化計算算法至關重要,本書成為研究人員和學生的寶貴資源。