Markov Decision Processes and Reinforcement Learning for Timely Uav-Iot Data Collection Applications
暫譯: 馬可夫決策過程與強化學習在即時無人機物聯網數據收集應用中的應用
Amodu, Oluwatosin Ahmed, Mahmood, Raja Azlina Raja, Althumali, Huda
- 出版商: Springer
- 出版日期: 2025-10-08
- 售價: $6,750
- 貴賓價: 9.5 折 $6,413
- 語言: 英文
- 頁數: 142
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031970101
- ISBN-13: 9783031970108
-
相關分類:
Reinforcement
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book offers a structured exploration of how Markov Decision Processes (MDPs) and Deep Reinforcement Learning (DRL) can be used to model and optimize UAV-assisted Internet of Things (IoT) networks, with a focus on minimizing the Age of Information (AoI) during data collection. Adopting a tutorial-style approach, it bridges theoretical models and practical algorithms for real-time decision-making in tasks like UAV trajectory planning, sensor transmission scheduling, and energy-efficient data gathering. Applications span precision agriculture, environmental monitoring, smart cities, and emergency response, showcasing the adaptability of DRL in UAV-based IoT systems. Designed as a foundational reference, it is ideal for researchers and engineers aiming to deepen their understanding of adaptive UAV planning across diverse IoT applications.
商品描述(中文翻譯)
本書提供了一個結構化的探索,說明如何利用馬可夫決策過程(Markov Decision Processes, MDPs)和深度強化學習(Deep Reinforcement Learning, DRL)來建模和優化無人機輔助的物聯網(Internet of Things, IoT)網絡,重點在於在數據收集過程中最小化信息年齡(Age of Information, AoI)。本書採用教學風格的方法,橋接理論模型和實用算法,以實現無人機軌跡規劃、傳感器傳輸排程和能源高效數據收集等任務中的即時決策。應用範圍涵蓋精準農業、環境監測、智慧城市和緊急應變,展示了DRL在基於無人機的物聯網系統中的適應性。作為一部基礎參考書籍,它非常適合希望深入了解各種物聯網應用中自適應無人機規劃的研究人員和工程師。