Fast Computation of Volume Potentials by Approximate Approximations
暫譯: 快速計算體積勢的近似方法

Lanzara, Flavia, Maz'ya, Vladimir, Schmidt, Gunther

  • 出版商: Springer
  • 出版日期: 2025-08-31
  • 售價: $3,460
  • 貴賓價: 9.5$3,287
  • 語言: 英文
  • 頁數: 264
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031974417
  • ISBN-13: 9783031974410
  • 相關分類: 數值分析 Numerical-analysis
  • 海外代購書籍(需單獨結帳)

商品描述

This book introduces a new fast high-order method for approximating volume potentials and other integral operators with singular kernel. These operators arise naturally in many fields, including physics, chemistry, biology, and financial mathematics. A major impediment to solving real world problems is the so-called curse of dimensionality, where the cubature of these operators requires a computational complexity that grows exponentially in the physical dimension. The development of separated representations has overcome this curse, enabling the treatment of higher-dimensional numerical problems. The method of approximate approximations discussed here provides high-order semi-analytic cubature formulas for many important integral operators of mathematical physics. By using products of Gaussians and special polynomials as basis functions, the action of the integral operators can be written as one-dimensional integrals with a separable integrand. The approximation of a separated representation of the density combined with a suitable quadrature of the one-dimensional integrals leads to a separated approximation of the integral operator. This method is also effective in high-dimensional cases. The book is intended for graduate students and researchers interested in applied approximation theory and numerical methods for solving problems of mathematical physics.

商品描述(中文翻譯)

本書介紹了一種新的快速高階方法,用於近似具有奇異核的體積勢能和其他積分算子。這些算子在許多領域中自然出現,包括物理學、化學、生物學和金融數學。解決現實世界問題的一個主要障礙是所謂的維度詛咒,這意味著這些算子的立方體積計算需要的計算複雜度在物理維度上呈指數增長。分離表示法的發展克服了這一詛咒,使得處理高維數值問題成為可能。本書討論的近似近似法提供了許多數學物理重要積分算子的高階半解析立方體公式。通過使用高斯函數和特殊多項式作為基函數,積分算子的作用可以寫成具有可分整合的單維積分。密度的分離表示的近似結合適當的單維積分的數值積分,導致積分算子的分離近似。這種方法在高維情況下也有效。本書旨在為對應用近似理論和數值方法解決數學物理問題感興趣的研究生和研究人員提供參考。

作者簡介

Flavia Lanzara is an associate professor at the Department of Mathematics, University of Rome "La Sapienza" (Italy). Her main research interests are partial differential equations, potential theory, complex analysis, numerical analysis and their applications.

Vladimir Maz'ya is a retired Swedish mathematician of worldwide reputation. The author of more than 500 publications, including 20 research monographs, he strongly influenced the development of mathematical analysis and the theory of partial differential equations, as well as the theory of mesoscale asymptotics and numerical analysis.

Gunther Schmidt is a retired German mathematician from the Weierstrass Institute for Applied Analysis and Stochastics in Berlin. His main research interests have been approximation theory, theoretical and numerical analysis of integral equation and boundary element methods and their application to electromagnetics and optics.

作者簡介(中文翻譯)

Flavia Lanzara 是義大利羅馬大學「拉薩比恩扎」數學系的副教授。她的主要研究興趣包括偏微分方程、勢理論、複變分析、數值分析及其應用。

Vladimir Maz'ya 是一位享有全球聲譽的瑞典數學家,已退休。他是500多篇出版物的作者,包括20本研究專著,對數學分析和偏微分方程理論的發展有著深遠的影響,還包括中尺度漸近理論和數值分析的理論。 Gunther Schmidt 是一位來自柏林魏爾施特拉斯應用分析與隨機研究所的德國數學家,已退休。他的主要研究興趣包括逼近理論、積分方程和邊界元素方法的理論與數值分析,以及它們在電磁學和光學中的應用。