Time Series Forecasting Using Machine Learning: Case Studies with R and Iforecast
暫譯: 使用機器學習進行時間序列預測:R與Iforecast的案例研究
Ho, Tsung-Wu
- 出版商: Springer
- 出版日期: 2025-08-31
- 售價: $6,240
- 貴賓價: 9.5 折 $5,928
- 語言: 英文
- 頁數: 131
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031979451
- ISBN-13: 9783031979453
-
相關分類:
R 語言、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This book uses R package iForecast to conduct financial economic time series forecasting with machine learning methods, especially the generation of dynamic forecasts out-of-sample. Firstly, the machine learning methods cover, for example, enet, random forecast, gbm, and autoML etc., including high binary economic time series. Secondly, I will explain the problem about the generation of recursive forecasts in machine learning framework, under which, there are no covariates, namely, input (independent) variables. This case is pretty common in real decision environment, for example, the decision-making wants 6-month forecasts in the real future, under with, there are no covariates available; therefore, what we can use is recursive, or multistep, forecasts. Besides, macro-econometric modelling uses VAR (vector autoregression) to overcome the problem of multivariate regression, this book offers a Machine-Learning VAR routine, which is found to improve the performance of multistep forecasting.
商品描述(中文翻譯)
本書使用 R 套件 iForecast 進行金融經濟時間序列預測,採用機器學習方法,特別是生成動態的樣本外預測。首先,機器學習方法涵蓋了例如 enet、隨機預測(random forecast)、gbm 和 autoML 等,包括高二元經濟時間序列。其次,我將解釋在機器學習框架下生成遞歸預測的問題,在這種情況下,沒有協變量,即輸入(獨立)變數。這種情況在實際決策環境中相當常見,例如,決策者希望在未來的六個月內進行預測,而此時沒有可用的協變量;因此,我們可以使用的是遞歸或多步預測。此外,宏觀計量經濟建模使用 VAR(向量自回歸)來克服多變量回歸的問題,本書提供了一個機器學習 VAR 程序,發現能改善多步預測的表現。
作者簡介
Tsung-wu Ho is a professor at National Taiwan Normal University. His research interests are Asset Pricing, Machine Learning, Economic and Decision Making.
作者簡介(中文翻譯)
何宗武是國立臺灣師範大學的教授。他的研究興趣包括資產定價、機器學習、經濟學和決策制定。