Hidden Markov Processes and Adaptive Filtering
暫譯: 隱馬可夫過程與自適應濾波

Kutoyants, Yury A.

  • 出版商: Springer
  • 出版日期: 2025-11-18
  • 售價: $7,920
  • 貴賓價: 9.5$7,524
  • 語言: 英文
  • 頁數: 654
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3032000513
  • ISBN-13: 9783032000514
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is devoted to the problem of adaptive filtering for partially observed systems depending on unknown parameters. Adaptive filters are proposed for a wide variety of models: Gaussian and conditionally Gaussian linear models of diffusion processes; some nonlinear models; telegraph signals in white Gaussian noise (all in continuous time); and autoregressive processes observed in white noise (discrete time). The properties of the estimators and adaptive filters are described in the asymptotics of small noise or large samples. The parameter estimators and adaptive filters have a recursive structure which makes their numerical realization relatively simple. The question of the asymptotic efficiency of the adaptive filters is also discussed.

Readers will learn how to construct Le Cam's One-step MLE for all these models and how this estimator can be transformed into an asymptotically efficient estimator process which has a recursive structure.

The last chapter covers several applications of the developed method to such problems as localization of fixed and moving sources on the plane by observations registered by K detectors, estimation of a signal in noise, identification of a security price process, change point problems for partially observed systems, and approximation of the solution of BSDEs.

Adaptive filters are presented for the simplest one-dimensional observations and state equations, known initial values, non-correlated noises, etc. However, the proposed constructions can be extended to a wider class of models, and the One-step MLE-processes can be used in many other problems where the recursive evolution of estimators is an important property.

The book will be useful for students of filtering theory, both undergraduates (discrete time models) and postgraduates (continuous time models). The method described, preliminary estimator + One-step MLE-process + adaptive filter, will also be of interest to engineers and researchers working with partially observed models.

商品描述(中文翻譯)

本書專注於針對依賴未知參數的部分觀察系統的自適應過濾問題。提出了適用於各種模型的自適應過濾器:高斯及條件高斯的擴散過程線性模型;一些非線性模型;在白高斯噪聲中的電報信號(均為連續時間);以及在白噪聲中觀察的自回歸過程(離散時間)。在小噪聲或大樣本的漸近情況下,描述了估計量和自適應過濾器的性質。參數估計量和自適應過濾器具有遞歸結構,使其數值實現相對簡單。還討論了自適應過濾器的漸近效率問題。

讀者將學習如何為所有這些模型構建 Le Cam 的一步最大似然估計(One-step MLE),以及如何將此估計量轉換為具有遞歸結構的漸近有效估計過程。

最後一章涵蓋了將所開發方法應用於多個問題的幾個應用,例如通過 K 個探測器註冊的觀察來定位平面上的固定和移動源、在噪聲中估計信號、識別安全價格過程、部分觀察系統的變更點問題,以及 BSDE 解的近似。

自適應過濾器針對最簡單的一維觀察和狀態方程、已知初始值、無關噪聲等進行了介紹。然而,所提出的構造可以擴展到更廣泛的模型類別,而一步最大似然過程可以用於許多其他問題,其中估計量的遞歸演變是一個重要特性。

本書將對過濾理論的學生(包括本科生(離散時間模型)和研究生(連續時間模型))非常有用。所描述的方法,即初步估計量 + 一步最大似然過程 + 自適應過濾器,對於處理部分觀察模型的工程師和研究人員也將具有吸引力。

作者簡介

Yury A. Kutoyants is Emeritus Professor at Le Mans University, France. He is co-founder and former Joint Editor of the journal Statistical Inference for Stochastic Processes. He is the author of about 170 papers and seven books published by the Armenian Academy of Sciences, Heldermann, Kluwer and Springer.

作者簡介(中文翻譯)

尤里·A·庫托揚茨(Yury A. Kutoyants)是法國勒芒大學的名譽教授。他是《隨機過程的統計推斷》(Statistical Inference for Stochastic Processes)期刊的共同創辦人及前聯合編輯。他已發表約170篇論文和七本書籍,這些書籍由亞美尼亞科學院、Heldermann、Kluwer和Springer出版。