Modeling Correlated Outcomes Using Extensions of Generalized Estimating Equations and Linear Mixed Modeling
暫譯: 使用擴展的廣義估計方程式和線性混合模型建模相關結果
Knafl, George J.
- 出版商: Springer
- 出版日期: 2026-02-01
- 售價: $7,200
- 貴賓價: 9.8 折 $7,056
- 語言: 英文
- 頁數: 615
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 303200988X
- ISBN-13: 9783032009883
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book formulates methods for modeling continuous and categorical correlated outcomes extending the commonly used methods: generalized estimating equations (GEE) and linear mixed modeling. Partially modified GEE adds estimating equations for variance/dispersion parameters to the standard GEE estimating equations for the mean parameters. Fully modified GEE uses alternate estimating equations for the mean parameters. The new estimating equations in these two cases are generated by maximizing a "likelihood" function related to the multivariate normal density function. Partially modified GEE and fully modified GEE use the standard GEE approach to estimate correlation parameters based on the residuals. Extended linear mixed modeling (ELMM) uses the likelihood function to estimate not only mean and variance/dispersion parameters, but also correlation parameters. Formulations are provided for gradient vectors and Hessian matrices, for a multi-step algorithm for solving estimating equations, and model-based and robust empirical tests for assessing theory-based models. Directly specified correlation structures are considered as well as covariance structures based on random effect/coefficients.
Standard GEE, partially modified GEE, fully modified GEE, and ELMM are demonstrated and compared using a variety of regression analyses of different types of correlated outcomes. Example analyses of correlated outcomes include linear regression for continuous outcomes, Poisson regression for count/rate outcomes, logistic regression for dichotomous outcomes, exponential regression for positive-valued continuous outcome, multinomial regression for general polytomous outcomes, ordinal regression for ordinal polytomous outcomes, and discrete regression for discrete numeric outcomes. These analyses also address nonlinearity in predictors based on adaptive search through alternative fractional polynomial models controlled by likelihood cross-validation (LCV) scores. Larger LCV scores indicate better models but not necessarily distinctly better models. LCV ratio tests are used to identify distinctly better models.
A SAS(R) macro has been developed for analyzing correlated outcomes using standard GEE, partially modified GEE, fully modified GEE, and ELMM within alternative regression contexts. This macro and code for conducting the analyses addressed in the book are available as supplementary materials upon request from the author. Detailed descriptions of how to use this macro and interpret its output are provided in the book.
商品描述(中文翻譯)
這本書制定了建模連續和類別相關結果的方法,擴展了常用的方法:廣義估計方程(GEE)和線性混合模型。部分修正的 GEE 在標準 GEE 估計均值參數的估計方程中添加了方差/散佈參數的估計方程。完全修正的 GEE 使用替代的均值參數估計方程。在這兩種情況下,新的估計方程是通過最大化與多變量正態密度函數相關的「似然」函數生成的。部分修正的 GEE 和完全修正的 GEE 使用標準 GEE 方法根據殘差來估計相關參數。擴展線性混合建模(ELMM)使用似然函數來估計均值和方差/散佈參數,以及相關參數。提供了梯度向量和海森矩陣的公式,針對解決估計方程的多步驟算法,以及基於模型的和穩健的實證測試來評估理論基礎模型。考慮了直接指定的相關結構以及基於隨機效應/係數的協方差結構。
標準 GEE、部分修正的 GEE、完全修正的 GEE 和 ELMM 通過對不同類型的相關結果進行各種回歸分析來演示和比較。相關結果的示例分析包括連續結果的線性回歸、計數/比率結果的泊松回歸、二元結果的邏輯回歸、正值連續結果的指數回歸、一般多項結果的多項回歸、有序多項結果的有序回歸,以及離散數值結果的離散回歸。這些分析還針對基於通過似然交叉驗證(LCV)分數控制的替代分數多項式模型的預測變數中的非線性進行處理。較大的 LCV 分數表示更好的模型,但不一定表示明顯更好的模型。LCV 比率檢驗用於識別明顯更好的模型。
已開發出一個 SAS(R) 宏,用於在替代回歸上下文中使用標準 GEE、部分修正的 GEE、完全修正的 GEE 和 ELMM 來分析相關結果。這個宏和進行書中所述分析的代碼可根據要求向作者索取作為補充材料。書中提供了如何使用這個宏及解釋其輸出的詳細說明。
作者簡介
George J. Knafl is Biostatistician and Professor Emeritus in the School of Nursing of the University of North Carolina at Chapel Hill where he taught statistics courses for doctoral nursing students, consulted with doctoral students and faculty on their research, and conducted his own research. He has over 45
years of experience in teaching, consulting, and research in statistics. He has continued to conduct research involving development of methods for searching through alternative models for different types of statistical data and application of those methods to the analysis of a variety of health science data sets. He is also Professor Emeritus in the College of Computing and Digital Media at DePaul University and has served on the faculties of the Schools of Nursing at Yale University and at the Oregon Health and Science University.
作者簡介(中文翻譯)
喬治·J·克納夫(George J. Knafl)是北卡羅來納大學教堂山分校護理學院的生物統計學家及名譽教授,他曾教授博士護理學生的統計課程,並為博士生及教職員提供研究諮詢,還進行自己的研究。他在統計學的教學、諮詢和研究方面擁有超過45年的經驗。他持續進行研究,涉及為不同類型的統計數據搜尋替代模型的方法開發,並將這些方法應用於各種健康科學數據集的分析。他同時也是德保羅大學計算與數位媒體學院的名譽教授,曾在耶魯大學和俄勒岡健康與科學大學的護理學院任教。