Machine-Learning-Assisted Software Defect Prediction
暫譯: 機器學習輔助軟體缺陷預測
Xu, Zhou
- 出版商: Springer
- 出版日期: 2025-11-20
- 售價: $8,620
- 貴賓價: 9.5 折 $8,189
- 語言: 英文
- 頁數: 448
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3032013356
- ISBN-13: 9783032013354
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book focuses on software defect prediction (SDP) in order to avoid threats related to quality, reliability and safety. It details advanced machine/deep learning technologies to discuss strategies for identifying and preventing such issues, and introduces innovative approaches to address feature irrelevance and redundancy, data imbalance in defect data, selection of representative module subsets for cross-version defect prediction, and managing data distribution variances in cross-project defect prediction. The book is organized into eight chapters, systematically covering various aspects of software defect prediction. First, chapter 1 "Introduction" explains the socio-economic significance and importance of software defect prediction. Next, chapter 2 "Literature Review" reviews and analyzes current technologies and their applications in defect prediction. Then chapter 3 "Feature Learning" discusses how to extract effective features from software engineering data using machine learning techniques. While chapter 4 "Handling Class Imbalance" introduces strategies to address the class imbalance in software defect data, chapter 5 "Cross-Version Defect Prediction" analyzes the application of historical version data to enhance the accuracy of prediction models. Subsequently, chapter 6 "Cross-Project Defect Prediction" discusses how to mitigate data discrepancies between projects through transfer learning, and chapter 7 "Effort-Aware Defect Prediction" delves into new technologies to rank software modules based on the defect density. Eventually, chapter 8 "Conclusion and Future Trends" summarizes the book and outlines future research directions. The book mainly targets academic researchers and graduate students, particularly those focusing on the intersection of software engineering and machine learning. It is also intended for software engineers and data scientists working on enhancing the quality and safety of software.
商品描述(中文翻譯)
本書專注於軟體缺陷預測(Software Defect Prediction, SDP),以避免與品質、可靠性和安全性相關的威脅。書中詳細介紹了先進的機器學習/深度學習技術,討論識別和預防此類問題的策略,並介紹創新的方法來解決特徵無關性和冗餘、缺陷數據中的數據不平衡、選擇代表性模組子集以進行跨版本缺陷預測,以及管理跨專案缺陷預測中的數據分佈變異。
本書共分為八章,系統性地涵蓋軟體缺陷預測的各個方面。首先,第1章「導論」解釋了軟體缺陷預測的社會經濟意義和重要性。接下來,第2章「文獻回顧」回顧並分析當前技術及其在缺陷預測中的應用。然後,第3章「特徵學習」討論如何使用機器學習技術從軟體工程數據中提取有效特徵。第4章「處理類別不平衡」介紹了解決軟體缺陷數據中類別不平衡的策略,第5章「跨版本缺陷預測」分析了歷史版本數據在提高預測模型準確性方面的應用。隨後,第6章「跨專案缺陷預測」討論如何通過轉移學習來減輕專案之間的數據差異,第7章「考量努力的缺陷預測」深入探討了根據缺陷密度對軟體模組進行排名的新技術。最後,第8章「結論與未來趨勢」總結了本書並概述了未來的研究方向。
本書主要針對學術研究者和研究生,特別是那些專注於軟體工程與機器學習交集的讀者。同時也適合致力於提升軟體品質和安全性的軟體工程師和數據科學家。
作者簡介
Zhou Xu was an assistant professor in the School of Big Data and Software Engineering at Chongqing University, China, from 2020 to 2022. His research interests encompass software defect prediction, empirical software engineering, feature engineering, and data mining. He has published more than 50 papers in international journals and conferences, among them IEEE Transactions on Software Engineering, IEEE Transactions on Reliability, Journal of System and Software, ASE or ISSRE.
作者簡介(中文翻譯)
周旭於2020年至2022年擔任中國重慶大學大數據與軟體工程學院的助理教授。他的研究興趣包括軟體缺陷預測、實證軟體工程、特徵工程和資料探勘。他在國際期刊和會議上發表了超過50篇論文,其中包括《IEEE軟體工程期刊》、《IEEE可靠性期刊》、《系統與軟體期刊》、《ASE》或《ISSRE》。