Big Data Analysis: High Dimensional Probability, Statistics, Optimization, and Inference
暫譯: 大數據分析:高維概率、統計、優化與推斷

Lu, Junwei

  • 出版商: Springer
  • 出版日期: 2025-11-07
  • 售價: $4,520
  • 貴賓價: 9.5$4,294
  • 語言: 英文
  • 頁數: 170
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3032031605
  • ISBN-13: 9783032031600
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book covers the methods and theory of high dimensional probability, statistics, large-scale optimization, and inference. We aim to quickly bring readers to the frontier and interdisciplinary areas of statistics, optimization, probability, and machine learning. This book covers topics in:

High dimensional probability, Concentration inequality, Sub-Gaussian random variables, Chernoff bounds, Hoeffding's inequality, Maximal inequalities, High dimensional linear regression, Ordinary least square, Compressed sensing, Lasso, Variations of Lasso including group lasso, fused lasso, adaptive lasso, etc., General high dimensional M- estimators, Variable selection consistency, High dimensional Optimization, Convex geometry, Lagrange duality, Gradient descent, Proximal gradient descent, LARS, ADMM, Mirror descent, Stochastic optimization, Large-Scale Inference, Linear model hypothesis testing, high dimensional inference, Chi-square test, maximal test, and Higher criticism, False discovery rate control.

商品描述(中文翻譯)

本書涵蓋高維機率、統計、大規模優化和推斷的方法與理論。我們的目標是迅速將讀者帶入統計、優化、機率和機器學習的前沿及跨學科領域。本書涵蓋的主題包括:

高維機率、集中不等式、次高斯隨機變數、切爾諾夫界限、霍夫丁不等式、最大不等式、高維線性回歸、普通最小二乘法、壓縮感知、Lasso、Lasso的變體包括群體Lasso、融合Lasso、自適應Lasso等、一般高維M-估計量、變數選擇一致性、高維優化、凸幾何、拉格朗日對偶、梯度下降、近端梯度下降、LARS、ADMM、鏡像下降、隨機優化、大規模推斷、線性模型假設檢驗、高維推斷、卡方檢驗、最大檢驗和高級批評、假陽性率控制。

作者簡介

Junwei Lu is an Assistant Professor in Harvard T.H. Chan School of Public Health. His research focuses on the intersection of statistical machine learning and clinical studies, revealing scientific associations among clinical treatment strategies and patient phenotyping, especially focusing on precision medicine leveraging real-world clinical data such as electronic health records data for risk prediction and clinical optimization.

作者簡介(中文翻譯)

盧俊偉是哈佛大學T.H. Chan公共衛生學院的助理教授。他的研究專注於統計機器學習與臨床研究的交集,揭示臨床治療策略與患者表型之間的科學關聯,特別是利用真實世界的臨床數據(如電子健康紀錄數據)進行風險預測和臨床優化,專注於精準醫療。