Spectral Information Dynamics in Network Neuroscience and Physiology
暫譯: 網絡神經科學與生理學中的光譜信息動力學

Sparacino, Laura

  • 出版商: Springer
  • 出版日期: 2026-01-03
  • 售價: $7,340
  • 貴賓價: 9.5$6,973
  • 語言: 英文
  • 頁數: 243
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 303205415X
  • ISBN-13: 9783032054159
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book introduces a unified framework that integrates various data-driven information dynamics approaches to quantify node-specific, pairwise, and high-order interactions within complex systems in the contexts of network neuroscience and network physiology. Using measures of information rate, a hierarchical organization of interactions is established to describe the dynamics of individual nodes, connections between pairs, and redundant or synergistic relationships among groups of nodes. Initially defined in the time domain, these measures are extended to the spectral domain, enabling frequency-specific analysis under the Gaussian assumption and linear parametric models. The framework is validated on simulated network systems and applied to real-world multivariate time series in neuroscience and physiology. The spectral high-order information measures successfully reveal respiratory-driven redundancy in cardiovascular, cardiorespiratory, and cerebrovascular systems, and uncover a predominance of redundancy in high-order brain interactions, alongside the emergence of synergistic circuits not captured by pairwise analysis. These results emphasize the importance of high-order, frequency-resolved information measures in characterizing complex network dynamics and provide new insights into the coordinated functioning of physiological and neural systems.

商品描述(中文翻譯)

本書介紹了一個統一框架,整合了各種數據驅動的信息動態方法,以量化複雜系統中節點特定、成對及高階互動,特別是在網絡神經科學和網絡生理學的背景下。通過信息速率的度量,建立了一個互動的階層組織,以描述個別節點的動態、成對之間的連接以及節點群體之間的冗餘或協同關係。這些度量最初在時間域中定義,隨後擴展到頻譜域,使得在高斯假設和線性參數模型下進行頻率特定的分析成為可能。該框架在模擬網絡系統上進行了驗證,並應用於神經科學和生理學中的實際多變量時間序列。頻譜高階信息度量成功揭示了心血管、心肺和腦血管系統中由呼吸驅動的冗餘,並發現高階大腦互動中冗餘的主導地位,以及未被成對分析捕捉到的協同電路的出現。這些結果強調了高階、頻率解析的信息度量在表徵複雜網絡動態中的重要性,並提供了對生理和神經系統協調運作的新見解。