Varieties of Nodal Surfaces, Coding Theory and Discriminants of Cubic Hypersurfaces
暫譯: 節面變體、編碼理論與三次超曲面的判別式
Catanese, Fabrizio
- 出版商: Springer
- 出版日期: 2026-01-15
- 售價: $4,910
- 貴賓價: 9.5 折 $4,665
- 語言: 英文
- 頁數: 203
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3032058988
- ISBN-13: 9783032058980
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This research book deals with some classical problems of algebraic geometry, notably the problem about the maximal number of singularities that a nodal variety can have, and the problem about the description of the components of the Severi varieties of nodal surfaces. A complete solution is found for nodal quartic surfaces in 3-space and for nodal K3 surfaces. New striking results are found also for quintic and sextic surfaces. The main focus of the book is the relation of nodal surfaces with binary coding theory, introduced by Beauville: two codes are attached to a nodal projective surface, which are invariants of these components, and in some cases determine them.
The book contains a very concrete introduction to binary coding theory and new applications of Nikulin's theory of primitive embeddings of lattices. The book contains also a thorough investigation of cubic hypersurfaces and their singularities, and the associated discriminant surfaces, providing new constructions for surfaces of degree 5 and 6 with the maximal number of nodes. A surprising relation is found between the Barth 65 nodal surface and the Doro-Hall graph. The book is addressed to algebraic geometers and experts of coding theory. It is also meant to be a source of many beautiful classical constructions, due to Kummer, Togliatti and others, which should be of interest to graduate students who want to get to know classical projective geometry.
商品描述(中文翻譯)
這本研究書探討了一些代數幾何的經典問題,特別是有關節點多樣體可以擁有的奇異點的最大數量的問題,以及有關節點曲面塞維里多樣體組件描述的問題。對於三維空間中的節點四次曲面和節點 K3 曲面,已找到完整的解決方案。對於五次和六次曲面也發現了新的驚人結果。這本書的主要焦點是節點曲面與二元編碼理論之間的關係,該理論由 Beauville 提出:兩個編碼與一個節點射影曲面相關聯,這些編碼是這些組件的不變量,在某些情況下可以確定它們。
本書包含了對二元編碼理論的非常具體的介紹,以及尼庫林的原始嵌入格理論的新應用。本書還對三次超曲面及其奇異點進行了徹底的研究,以及相關的判別曲面,提供了新的構造,用於具有最大節點數的五次和六次曲面。發現了 Barth 65 節點曲面與 Doro-Hall 圖之間的驚人關係。本書面向代數幾何學家和編碼理論專家。它也旨在成為許多美麗的經典構造的來源,這些構造來自 Kummer、Togliatti 等人,應該對希望了解經典射影幾何的研究生感興趣。
作者簡介
Fabrizio Catanese is a leading algebraic geometer, member of the Accademia dei Lincei, the Goettingen Academy, and the Academia Europaea. He has been a Full Professor at the University of Pisa, Italy (1980-1996), at Goettingen University (1997-2001), and since 2002, at Bayreuth University (Germany). He has been leading several research projects, and among others, an European Project Science, a DFG Graduiertenkolleg, a DFG Schwerpunkt Program, a DFG Forschergruppe, an ERC Advanced Grant, in which about 30 students and 30 Postdocs have been participating.
作者簡介(中文翻譯)
法布里齊奧·卡塔內塞 是一位領先的代數幾何學家,為意大利林切學院、哥廷根學院及歐洲學院的成員。他曾擔任意大利比薩大學的正教授(1980-1996)、哥廷根大學(1997-2001),以及自2002年起在德國拜羅伊特大學任教。他領導了多個研究項目,其中包括一個歐洲科學計畫、一個德國研究基金會(DFG)研究生學院、一個DFG重點計畫、一個DFG研究小組,以及一個歐洲研究委員會(ERC)高級獎勵計畫,約有30名學生和30名博士後研究人員參與其中。